Spatio-Temporal Data Analytics for Wind Energy Integration
53,49 €*
Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.
ISBN/EAN:
9783319123196
This SpringerBrief presents spatio-temporal data analytics for wind energy integration using stochastic modeling and optimization methods. It explores techniques for efficiently integrating renewable energy generation into bulk power grids. The operational challenges of wind, and its variability are carefully examined. A spatio-temporal analysis approach enables the authors to develop Markov-chain-based short-term forecasts of wind farm power generation. To deal with the wind ramp dynamics, a support vector machine enhanced Markov model is introduced. The stochastic optimization of economic dispatch (ED) and interruptible load management are investigated as well. Spatio-Temporal Data Analytics for Wind Energy Integration is valuable for researchers and professionals working towards renewable energy integration. Advanced-level students studying electrical, computer and energy engineering should also find the content useful.
Autor: | Lei Yang, Miao He, Junshan Zhang, Vijay Vittal |
---|---|
EAN: | 9783319123196 |
eBook Format: | |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 14.11.2014 |
Kategorie: | |
Schlagworte: | Distributional forecast Economic dispatch Graphical learning Markov chains Point forecast Short-term wind power forecast Spatio-temporal analysis Stochastic optimization Support vector machines Wind farm |
Anmelden
Möchten Sie lieber vor Ort einkaufen?
Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.
Buchhandlung Marabu
Telegrafenstr. 44
42929 Wermelskirchen
Telefon: 02196/1414
Mo – Fr09:00 – 18:00 UhrSa09:00 – 13:30 Uhr