Ensemble Machine Learning
234,33 €*
Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.
It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed 'ensemble learning' by researchers in computational intelligence and machine learning, it is known to improve a decision system's robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as 'boosting' and 'random forest' facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics.
Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.
Dr. Zhang works for Microsoft. Dr. Ma works for Honeywell.
Autor: | Cha Zhang, Yunqian Ma |
---|---|
EAN: | 9781441993267 |
eBook Format: | |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 17.02.2012 |
Untertitel: | Methods and Applications |
Kategorie: | |
Schlagworte: | Bagging Predictors Basic Boosting Ensemble learning Object Detection classification algorithm deep neural networks machine learning random forest stacked generalization statistical classifiers |
Anmelden
Möchten Sie lieber vor Ort einkaufen?
Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.
Buchhandlung Marabu
Telegrafenstr. 44
42929 Wermelskirchen
Telefon: 02196/1414
Mo – Fr09:00 – 18:00 UhrSa09:00 – 13:30 Uhr