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Preface

This volume contains a selection of 72 papers presented at the 15th Interna-
tional Conference on Domain Decomposition which was hosted by Freie Uni-
versität Berlin (FU) in cooperation with Zuse Institute Berlin (ZIB), Weier-
strass Institute Berlin (WIAS) and the DFG Research Center ‘Mathematics
for Key Technologies’ in Berlin, Germany, July 21 - 25, 2003. The attendance
of 167 scientists from 24 countries accentuates the relevance of this series of
almost annual meetings. In addition, an introductory tutorial by William D.
Gropp and David E. Keyes arranged in the run up to the conference attracted
31 participants from all parts of the world, most of which were students. The
conference itself included 15 plenary lectures delivered by leading experts in
the field, 12 Minisymposia, 37 contributed talks and a poster session. A total
of 144 presentations made this meeting one of the largest in the series of do-
main decomposition conferences. Since three parallel sessions were employed
in order to accommodate as many presenters as possible, attendees and non-
attendees alike may turn to this volume to keep up with future trends that
might be guessed from the diversity of subjects.

Domain decomposition conferences have become the most important mar-
ket place world wide for exchanging and discussing new ideas about the old
algorithmic paradigm of ‘divide and conquer’. Much of this reputation stems
from the close interaction of experts in numerical analysis and practitioners
from various fields of application concerning fast and reliable iterative methods
for discretized partial differential equations: Schwarz methods and substruc-
turing techniques form today’s basis for large scale parallel computing. The
unified view on the decomposition into subdomains and the decomposition
into frequencies in terms of abstract Schwarz methods or subspace correction
bridged the gap between domain decomposition and multigrid. Sophisticated
finite element tearing and interconnecting techniques opened new perspectives
(not only) in linear elasticity.

While classical domain decomposition concentrates on a given discretized
PDE, coupling/decoupling techniques have meanwhile been applied success-
fully to derive efficient solution procedures including the discretization itself:
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Mortar finite elements are most famous for their flexibility, e.g., with respect to
non-matching grids, a property which is particularly attractive in multi-body
contact. Other promising results concern the fast solution of time-dependent
problems by waveform relaxations with optimized coupling conditions or by
parareal algorithms.

The two latter approaches are motivated by parallel computation. On the
other hand, it is the underlying physical background that motivates, e.g., the
splitting of problems on an unbounded domain into a bounded and an un-
bounded part and gives rise to different discretizations in these subdomains
together with suitable coupling conditions. Many other physical problems
involve the localisation of the physics and their transient variability across
the geometric domain. For the mathematical description of such heteroge-
neous processes it is important to understand various options of coupling
subdomains in relation to the overall multi-physics problem. In this way, het-
erogeneous domain decomposition can be regarded as a new and promising
approach to the mathematical modeling of complex phenomena on multiple
scales.

This volume reviews recent developments in mathematical modeling, dis-
cretization, and fast and reliable solution by domain decomposition or related
techniques, including implementation issues. Applications comprise biocom-
puting, computational mechanics, combustion, electromagnetics, electronic
packaging, electrodynamics, fluid dynamics, medicine, metallurgy, microwave
technology, optimal control, porous media flow, and voice generation. For the
convenience of readers coming recently into the subject, a bibliography of
previous proceedings is provided below, along with some major recent review
articles and related special interest volumes. This list will inevitably be found
embarrassingly incomplete. (No attempt has been made to supplement this
list with the larger and closely related literature of multigrid and general it-
erative methods, except for the books by Hackbusch and Saad, which have
significant domain decomposition components.)

P. Bjørstad, M. Espedal, and D. Keyes, editors. Proc. Ninth Int. Conf.
on Domain Decomposition Methods for Partial Differential Equations, Ul-
lensvang, 1997. Wiley, New York, 1999.

T. Chan, R. Glowinski, J. Périaux, and O. Widlund, editors. Proc. Sec-
ond Int. Symp. on Domain Decomposition Methods for Partial Differential
Equations, Los Angeles, 1988. SIAM, Philadelphia, 1989.

T. Chan, R. Glowinski, J. Périaux, and O. Widlund, editors. Proc. Third Int.
Symp. on Domain Decomposition Methods for Partial Differential Equa-
tions, Houston, 1989. SIAM, Philadelphia, 1990.

T. Chan, T. Kako, H. Kawarada, and O. Pironneau, editors. Proc. Twelfth
Int. Conf. on Domain Decomposition Methods for Partial Differential Equa-
tions, Chiba, 1999. DDM.org, Bergen, 2001.
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T. Chan and T. Mathew. Domain decomposition algorithms. Acta Numerica,
pages 61–143, 1994.

M. Débit, M. Garbey, R. Hoppe, D. Keyes, Y. Kuznetsov, and J. Périaux,
editors. Proc. Thirteenth Int. Conf. on Domain Decomposition Methods for
Partial Differential Equations, Lyon, 2000. CINME, Barcelona, 2002.

C. Farhat and F.-X. Roux. Implicit parallel processing in structural mechan-
ics. Computational Mechanics Advances, 2:1–124, 1994.

R. Glowinski, G. Golub, G. Meurant, and J. Périaux, editors. Proc. First Int.
Symp. on Domain Decomposition Methods for Partial Differential Equa-
tions, Paris, 1987. SIAM, Philadelphia, 1988.

R. Glowinski, Y. Kuznetsov, G. Meurant, J. Périaux, and O. Widlund, editors.
Proc. Fourth Int. Symp. on Domain Decomposition Methods for Partial
Differential Equations, Moscow, 1990. SIAM, Philadelphia, 1991.

R. Glowinski, J. Périaux, Z.-C. Shi, and O. Widlund, editors. Proc. Eighth
Int. Conf. on Domain Decomposition Methods for Partial Differential Equa-
tions, Beijing, 1995. Wiley, Strasbourg, 1997.

W. Hackbusch. Iterative Methods for Large Sparse Linear Systems. Springer,
Heidelberg, 1993.

I. Herrera, D. Keyes, O. Widlund, and R. Yates, editors. Proc. Fourteenth
Int. Conf. on Domain Decomposition Methods in Science and Engineering,
Cocoyoc, 2002. UNAM, Mexico City, 2003.

D. Keyes, T. Chan, G. Meurant, J. Scroggs, and R. Voigt, editors. Proc.
Fifth Int. Conf. on Domain Decomposition Methods for Partial Differential
Equations, Norfolk, 1991. SIAM, Philadelphia, 1992.

D. Keyes, Y. Saad, and D. Truhlar, editors. Domain-based Parallelism and
Problem Decomposition Methods in Science and Engineering, 1995. SIAM,
Philadelphia.

D. Keyes and J. Xu, editors. Proc. Seventh Int. Conf. on Domain Decompo-
sition Methods for Partial Differential Equations, PennState, 1993. AMS,
Providence, 1995.

B. Khoromskij and G. Wittum. Numerical Solution of Elliptic Differential
Equations by Reduction to the Interface. Springer, 2004.

C.-H. Lai, P. Bjørstad, M. Cross, and O. Widlund, editors. Proc. Eleventh
Int. Conf. on Domain Decomposition Methods for Partial Differential Equa-
tions, Greenwich, 1999. DDM.org, Bergen, 2000.

P. Le Tallec. Domain decomposition methods in computational mechanics.
Computational Mechanics Advances, 2:121–220, 1994.

J. Mandel, C. Farhat, and X.-C. Cai, editors. Proc. Tenth Int. Conf. on
Domain Decomposition Methods for Partial Differential Equations, Boulder,
1998. AMS, Providence, 1999.

L. Pavarino and A. Toselli. Recent Developments in Domain Decomposition
Methods, volume 23 of Lecture Notes in Computational Science & Engineer-
ing. Springer, 2002.
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A. Quarteroni, J. Périaux, Y. Kuznetsov, and O. Widlund, editors. Proc.
Sixth Int. Conf. on Domain Decomposition Methods for Partial Differential
Equations, Como, 1992. AMS, Providence, 1994.

A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Dif-
ferential Equations. Oxford, 1999.

Y. Saad. Iterative Methods for Sparse Linear Systems. PWS, Boston, 1996.
B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Mul-

tilevel Algorithms for Elliptic Partial Differential Equations. Cambridge
Univ. Press, Cambridge, 1996.

A. Toselli and O. Widlund. Domain Decomposition Methods. Springer, 2004.
B. Wohlmuth. Discretization Methods and Iterative Solvers on Domain De-

composition. Springer, 2001.
J. Xu. Iterative methods by space decomposition and subspace correction.

SIAM Review, 34:581–613, 1991.

We also recommend the homepage for domain decomposition on the World
Wide Web www.ddm.org maintained by Martin Gander. This site features
links to past and future conferences, a growing number of conference proceed-
ings together with updated bibliographic and personal information pertaining
to domain decomposition.

We wish to thank all members of the Scientific Committee for Domain
Decomposition Conferences, and in particular the chair Ronald H.W. Hoppe,
for their help in setting the scientific direction of this conference. We are also
grateful to the organizers of the minisymposia for shaping the profile of the
scientific program and attracting high-quality presentations. The conference
offered a fruitful integration of scientific excellence of speakers with a great
level of interaction not only during the sessions but also along the friendly
conference dinner under the ‘communication tent’, bringing a pleasant and
relaxed atmosphere for exchanging information among attendees and lectur-
ers. The local organization was carried out by a wonderful team of almost
50 members of FU Berlin, Zuse Institute Berlin (ZIB), and Weierstrass Insti-
tute Berlin (WIAS). We thank all members of the local organizing committee
chaired by Ralf Kornhuber and, most notably, the conference manager Sa-
brina Nordt for perfectly taking care of all aspects of preparing and running
DD15.

We gratefully acknowledge the financial and logistic support of this con-
ference by FU Berlin, WIAS, ZIB, the German Research Foundation (DFG),
and, last but not least, by the DFG Research Center ‘Mathematics for Key
Technologies’.

The timely production of these proceedings would not have been possible
without the excellent cooperation of the authors and the referees. We would
like to thank all of them for their graceful and timely response to our various
demands. Special thanks are due to the technical editors Rainer Roitzsch and
Uwe Pöhle for patiently eliminating all kinds of bugs from the final LATEX
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source and for presenting these proceedings on the web. Finally we wish to
thank Martin Peters and Thanh-Ha Le Thi from Springer for a friendly, reli-
able, and efficient collaboration.

Ralf Kornhuber
Berlin, Germany

Ronald H.W. Hoppe
Augsburg, Germany and Houston, USA

Jacques Périaux
Paris, France

Olivier Pironneau
Paris, France

Olof B. Widlund
New York, USA

Jinchao Xu
PennState, USA
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Piotr Krzyżanowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

Hierarchical Matrices for Convection-Dominated Problems
Sabine Le Borne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631



xviii Contents

Parallel Performance of Some Two-Level ASPIN Algorithms
Leszek Marcinkowski, Xiao-Chuan Cai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

Algebraic Analysis of Schwarz Methods for Singular Systems
Ivo Marek, Daniel B. Szyld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

Schwarz Waveform Relaxation Method for the Viscous
Shallow Water Equations
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Summary. In this paper we introduce a variant of the three-field formulation where
we use only two sets of variables. Considering, to fix the ideas, the homogeneous
Dirichlet problem for −∆u = g in Ω, our variables are i) an approximation ψh of u
on the skeleton (the union of the interfaces of the sub-domains) on an independent
grid (that could often be uniform), and ii) the approximations us

h of u in each sub-
domain Ωs (each on its own grid). The novelty is in the way to derive, from ψh,
the values of each trace of us

h on the boundary of each Ωs. We do it by solving
an auxiliary problem on each ∂Ωs that resembles the mortar method but is more
flexible. Optimal error estimates are proved under suitable assumptions.

1 Introduction

Assume, for simplicity, that we have to solve the model problem

find u ∈ H1
0 (Ω) such that −∆u = g in Ω with u = 0 on ∂Ω (1)

on a polygonal or polyhedral domain Ω ⊂ Rn, n = 2, 3, where g is a given
function sufficiently regular in Ω. In order to apply a Domain Decomposition
technique we split Ω into sub-domains Ωs (s = 1, 2, ..., S) and we consider the
skeleton

Σ := ∪sΓ
s, with Γ s ≡ ∂Ωs. (2)

For the sake of simplicity we will use a three-dimensional notation, and speak
therefore of faces, edges and vertices. The change of terminology in the polyg-
onal case is obvious and left to the reader. On Σ we consider

Φ := {ϕ ∈ L2(Σ) : ∃v ∈ H1
0 (Ω) with ϕ = v|Σ} ≡ H1

0 (Ω)|Σ ≡ H1/2(Σ). (3)

In each Ωs we consider instead

V s := {vs ∈ H1(Ωs) such that ∃v ∈ H1
0 (Ω) with vs = v|Ωs}, (4)
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that can also be seen as the set of functions in H1(Ωs) that vanish at the
intersection (if any) of Γ s with ∂Ω. In its turn, H1

0 (Ω) could be identified
with a subspace of

V := {u ∈ L2(Ω), u|Ωs ∈ V s}, (5)

and in particular, setting vs := v|Ωs we can write

H1
0 (Ω) � {v ∈ V such that ∃ϕ ∈ Φ with vs = ϕ on Γ s, s = 1, ..., S}. (6)

For each s we will also introduce the trace space Θs = H1/2(Γ s), and we set
Θ =

∏
s Θ

s. For v ∈ V , θ = (θ1, . . . , θs) ∈ Θ we will write

v|Σ = θ to indicate that θs = vs|Γ s (with vs = v|Ωs), s = 1, . . . , S.

When discretizing the problem, we assume to be given a decomposition
T Σ

δ of Σ and a corresponding space Φδ ⊂ Φ of piecewise polynomials. We
also assume that in each Ωs we are given a decomposition T s

h ≡ T Ωs

h with a
corresponding space V s

h ⊂ V s of piecewise polynomials, and we set

Vh := {v ∈ V such that v|Ωs ∈ V s
h }. (7)

It is clear that each decomposition T s
h will induce a decomposition T Γ s

h on
Γ s and a corresponding space of traces Θs

h ⊂ Θs. On the other hand the
restriction of T Σ

δ to Γ s also induces a decomposition T Γ s

δ of Γ s and another
space of piecewise polynomials Φs

δ made by the restrictions of the functions in
Φδ to Γ s. Hence, on each Γ s we have two decompositions (one coming from
T Σ

δ and one from T s
h ) and two spaces of piecewise polynomial functions (one

from Φδ and one from V s
h ). Note, incidentally, that on each face f belonging to

two different sub-domains we will have three decompositions and three spaces:
one from Σ and the other two from the two sub-domains.

The first basic idea of our method is to design for every sub-domain Ωs a
linear operator Gs (the generation operator) that maps every mother ϕδ ∈ Φδ

into an element (daughter) θs
h = Gs(ϕδ) ∈ Θs

h. Together with the individual
Gs we consider a global operator G defined as

G(ϕδ) = (θ1
h, . . . , θ

S
h ) ∈ Θh with θs = Gs(ϕδ). (8)

The way to construct the operators Gs constitutes the second basic idea
of this paper, and will be described in a while.

Once we have the operators Gs we can consider the subspace Sh of Vh

made of sisters (that is, daughters of the same mother):

Sh := {vh ∈ Vh such that ∃ϕδ ∈ Φδ with vh|Σ = G(ϕδ)} ⊆ V. (9)

We point out that in our previous definitions we consider as daughter, at the
same time, an element θs

h (= vs
h|Γ s) of Θs

h, and any function vs
h ∈ V s

h having
that same trace. It is clear, comparing (9) with (6), that Sh can be seen
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as a nonconforming approximation of H1
0 (Ω). This allows us to consider the

following discrete formulation. We set

as (u, v) :=
∫

Ωs

∇u · ∇vdx and a (u, v) :=
S∑

s=1

as (us, vs) (10)

and we look for uh ∈ Sh such that

a (uh, vh) =
∫

Ω

g vhdx ∀vh ∈ Sh. (11)

It is clear that, under reasonable assumptions on the subspaces Φδ and V s
h

and on the generation operators Gs, problem (11) will have good stability and
accuracy properties.

The idea of imposing weak continuity by introducing the space Φδ and
define a nonconforming approximation of H1

0 (Ω) by taking the subset of Vh

whose elements take (in some weak sense) value ϕh ∈ Φδ is one of the main
ideas of the three field formulation (Brezzi and Marini [1994]). Following that
approach, for each sub-domain Ωs we could take a space M s

h of Lagrange
multipliers, and, for every ϕδ ∈ Φδ, we could define Gs(ϕδ) ∈ Θs

h by∫
Γ s

(ϕδ − Gs(ϕδ))µs
h dx = 0 ∀µs

h ∈M s
h. (12)

In general, however, equation (12) does not define Gs(ϕdelta) uniquely, even
when the spaces M s

h and Θs
h satisfy the required inf-sup condition (see (24)).

Though this is not a problem in the definition and in the analysis of the
three field formulation, we would like to point out that having the trace of
the elements vs

h on Γ s somehow uniquely determined by an element of Φδ

has some clear advantage from the point of view of implementation. In par-
ticular it allows to use standard Dirichlet solvers (which can easily be found
already implemented and whose optimization is well understood) as a brick
for treating the equation in the subdomain. In order for Gs(ϕδ) to be uniquely
determined by (12) the spaces M s

h and Θs
h must have the same dimension. A

simple minded choice is M s
h ≡ Θs

h, that guarantees existence and uniqueness
of the solution of (12) together with optimal stability and accuracy properties
of the projector Gs. This choice however is not the optimal one: in fact, during
the estimate of the error for problem (11), there seems to be no way to get
rid of a term like ∑

s

∫
Γ s

∂u

∂ns
(ϕδ − Gs(ϕδ)) dx. (13)

An obvious way to treat the term in (13) is to use the fact that ϕδ − Gs(ϕδ)
is orthogonal to all elements in M s

h, so that we can subtract from ∂u/∂ns

any element of M s
h. In particular we are interested in subtracting a suitable

approximation µs
I � ∂u/∂ns. It is then crucial to be able to find in M s

h a
µs

I that approximates ∂u/∂ns with the needed order. However, ∂u/∂ns is
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discontinuous passing from one face to another of the same Ωs. And if the
spaceM s

h is made of continuous functions (as it would be with the choiceM s
h ≡

Θs
h), then the order of approximation (say, in H−1/2(∂Ωs)) cannot be better

than O(h) (and actually with some additional logarithmic loss, as O(h|lg h|).
Hence, we do need an M s

h made of functions that can be discontinuous when
passing from one face to another of the same Ωs. The requirement to contain
a suitable amount of discontinuities and the one to have the same dimension
of Θs

h seem very difficult to conciliate. Actually, a quite similar difficulty is
met in the mortar method, (see e.g. Bernardi et al. [1993], Belgacem and
Maday [1997], Hoppe et al. [1998], Wohlmuth [2001]), in particular in three
dimensions. There, the requirement that M s

h have the same dimension as Θs
h

is relaxed as little as possible. The values of a “weakly continuous” function vs
h

at nodes which are interior to the faces of Γ s on the slave sides are uniquely
determined by the weak continuity equation, while the degrees of freedom
corresponding to nodes on the edges of Γ s (whose union forms the so called
wirebasket) are free. We point out that the mortar method can be described
in the framework given here provided we relax the assumption Φδ ⊂ H1/2(Σ)
by allowing the functions φδ to be discontinuous across the “wirebasket”: Φδ

would correspond to the traces of vh on the “master sides” (or “mortars”) and
Gs being defined as the identity on master sides and to one of the available
mortar projections on “slave sides”.

The idea, here, is to give up the equality of the dimensions but still obtain
a well defined operator Gs, by changing (12) in a slightly more complicated
formulation, involving an additional Lagrange multiplier. Let us see the main
features of this path.

We choose first a space M s
h having in mind the fact that we must be able

to use it for approximating ∂u/∂ns with the right order. We also need its
dimension to be smaller than (or equal to) that of Θs

h. Then we change (12)
in the following way. For every ϕδ ∈ Φδ we look for a pair (θ̃s

h, µ̃
s
h) in Θs

h×M s
h

such that ∫
Γ s

(ϕδ − θ̃s
h)µs

h dx = 0 ∀µs
h ∈M s

h (14)

and ∑
T∈T Γ s

h

∫
T

h−1
T (ϕδ − θ̃s

h) θs
h dx+

∫
Γ s

µ̃s
h θ

s
h dx = 0 ∀θs

h ∈ Θs
h. (15)

Then we set
Gs(ϕδ) := θ̃s

h. (16)

It is clear that in (14)-(15) the number of equations will always be equal
to the number of unknowns. It is also clear that if (by shear luck) we have
ϕδ|Γ s ∈ Θs

h then Gs(ϕδ) = ϕδ|Γ s (and µ̃s
h = 0). This will, in the end, provide

for the new approach (14)-(16) an optimal order of accuracy (as we had for
the previous simple-minded (12)). It is, finally, also obvious that some sort of
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inf-sup condition will be needed in order to ensure existence and uniqueness
of the solution of (14)-(15), unless some suitable additional stabilization is
introduced. However, as we shall see, the possibility of escaping the cage
of the equal dimensionality of M s

h and Θs
h opens a whole lot of interesting

possibilities.
In this paper we will follow the path indicated above. In the next section we

will make precise all the necessary assumptions, and in Section 3 we will derive
abstract error bounds for problem (11) when the operators Gs are constructed
as in (14)-(16). In Section 4 we will present some possible choices for the
finite element spaces and discuss their stability and accuracy properties. In
particular we will show that the simple choice of using totally discontinuous
functions for M s

h, stabilizing the problem with suitable boundary bubbles, leads
to a problem with optimal convergence properties and, at the same time, a
very simple implementation. This is reminiscent of what has been done for
instance in Baiocchi et al. [1992], Brezzi et al. [1997], Buffa [2002], and Brezzi
and Marini [2000], but simpler and more effective. Finally, in the last section
we briefly discuss some possible variants/extensions, in particular regarding
the possibility of using discontinuous mothers.

2 Assumptions on the decomposition and on the
discretizations

We consider now the assumptions to be made on the decomposition and on
the discretizations.

Assumptions on Ω and on the domain decomposition

We assume that Ω is an open polyhedron, that each Ωs, for s = 1, ..., S, is
also an open polyhedron, that the intersection of two different Ωs is empty,
and that the union of the closures of all Ωs is the closure of Ω. As in (2) the
skeleton Σ will be the union of the boundaries ∂Ωs. We do not assume that
this decomposition is compatible. This means that we do not assume that the
intersection of the closure of two different Ωs is either a common face, or a
common edge, or a common vertex. For simplicity we assume however that
the number S of subdomains is fixed once and for all, and we do not keep
track of the dependency of the various constants on S.

Assumptions on the decomposition T Σ
δ

We assume that we are given a sequence {T Σ
δ }δ of decompositions of Σ.

Each decomposition T Σ
δ is made of open triangles, in such a way that the

intersection of two different triangles is empty, and the union of the closures
of all triangles is Σ. We assume compatibility, that is we assume that the
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intersection of the closures of two different triangles is either empty, a common
edge or a common vertex. We also assume, as usual, shape regularity, for
instance by assuming that the ratio between the diameter of each triangle
and the radius of its biggest inscribed circle is ≤ κ0, with κ0 independent of δ.
Finally we assume quasi-uniformity: there exists a constant q, independent of
δ such that, if δmin

T and δmax
T are the minimum and the maximum diameters

(respectively) of the triangles in T Σ
δ , then δmin

T ≥ q δmax
T .

Assumptions on the decompositions T s
h (and T Γ s

h )

We assume that we are given, for each s = 1, ..., S, a sequence {T s
h }h of

decompositions of Ωs. Each decomposition is made of open tetrahedra in
such a way that the intersection of two different tetrahedra is empty, and the
union of the closures of all tetrahedra is Ωs. We also assume compatibility:
the intersection of the closures of two different tetrahedra is either empty, a
common face, a common edge, or a common vertex. Finally we assume shape
regularity, for instance by assuming that the ratio between the diameter of
each tetrahedron and the radius of its biggest inscribed sphere is ≤ κ1, with
κ1 independent of h. We point out that we do not assume quasi-uniformity
for the meshes T s

h . We recall that the triangulation T Γ s

h is the restriction on
Γ s of T s

h .

Assumptions on the discretizations Φδ, V s
h , and Ms

h

We assume that for each δ and for each T ∈ T Σ
δ we are given a space of

polynomials PT . The space Φδ will then be defined as

Φδ := {ϕ ∈ Φ such that ϕ|T ∈ PT , T ∈ T Σ
δ }, (17)

where Φ is always given by (3). Similarly we assume that for each s, for each
h, and for each K ∈ T s

h we are given a space of polynomials PK . The space
V s

h will then be defined as

V s
h := {vs ∈ V s such that vs

|K ∈ PK , K ∈ T s
h }, (18)

where V s is still given by (4).
The corresponding restrictions of the above spaces to each Γ s are defined

as in the previous section, namely

Φs
δ := (Φδ)|Γ s and Θs

h := (V s
h )|Γ s , s = 1, ..., S. (19)

We assume that there exist bounded lifting operators from Θs
h to V s

h . More
precisely, for all s = 1, . . . , S, for all θs

h ∈ Θs
h there exists ws

h ∈ V s
h such that

ws
h|Γ s = θs

h and ‖ws
h‖1,Ωs ≤ C‖θs

h‖H1/2(Γ s). (20)
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Finally we assume that for each s, for each h, and for each T ∈ T Γ s

h we
are given a space of polynomials QT . The space M s

h will then be defined as

M s
h := {µ ∈ L2(Γ s) such that µ|T ∈ QT , T ∈ T Γ s

h }. (21)

If we like, we can also add some continuity requirements to (21). In view of
the discussion of the previous section, however, it would be unwise to force
continuity in the passage from one face to another. In order for the bilinear
form a to ve coercive in a suitable space, we make the following minimal
assumption on M s

h:

for every Ωs the space M s
h contains the constants on Γ s. (22)

Moreover, for simplicity, we assume that there exists an integer number κ
such that all the spaces PT , PK , and QT verify

PT ⊆ Pκ(T ), PK ⊆ Pκ(K), QT ⊆ Pκ(T ),

where Pκ(ω) is the space of polynomials of degree≤ κ on ω. Using the notation
of Brezzi and Fortin [1991a] for the usual Lagrange finite element spaces we
can then write

V s
h ⊆ L1

κ(T s
h ), Θs

h ⊆ L1
κ(T Γ s

h ), M s
h ⊆ L0

κ(T Γ s

h ), Φδ ⊆ L1
κ(T Σ

δ ).

The operators Gs and the compatibility assumptions among the
discretizations

Having defined the spaces Θs
h and M s

h we can now consider the operators
Gs (that will always be given by (14)-(16)) together with the global operator
G (still given by (8)). Once we have the operators Gs and G, we can define the
space of sisters Sh, always as in (9). In Sh we define:

|||vh|||2 :=
S∑

s=1

||∇vs
h||20,Ωs (23)

We can now turn to the more important assumptions, that will require
some compatibility conditions among the spaces Φs

δ, Θ
s
h and M s

h.
Our first assumption will deal with the well-posedness of the problem (14)-

(16). As this is a problem in classical mixed form, we have no real escape but
assuming an inf-sup condition on the spaces Θs

h and M s
h:

∃β > 0 such that ∀s = 1, ..., S and ∀h > 0

inf
µs

h
∈Ms

h
\{0}

sup
θs

h∈Θs
h\{0}

∫
Γ s θ

s
h µ

s
h dx

||θs
h||h, 1

2 ,Γ s ||µs
h||h,− 1

2 ,Γ s

> β, (24)

were the norms in the denominator of (24) are defined, for any real r, as
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||θs
h||2h,r,Γ s :=

∑
T∈T Γ s

h

h−2r
T ||θs

h||20,T (25)

and hT is the diameter of T . Condition (24) will be, in a sense, the only
nontrivial assumption that we have to take into account in the definition of
our spaces V s

h and M s
h. However, in the next section, we are going to see some

families of elements where (24) can be checked rather easily.

Our last assumption will deal with the bound on the mother. We point out
that, so far, we did not assume that an element of the space of sisters Sh had
a unique mother. Indeed, we do not need it. Strictly speaking, we only need
that

∃γ > 0 such that: ∀vh ∈ Sh, ∃ϕδ ∈ Φδ with G(ϕδ) = vh|Σ and

||ϕ||2Φ :=
S∑

s=1

|ϕδ|2H1/2(Γ s) ≤ γ2|||vh|||2. (26)

We point out that || · ||Φ is indeed a norm on Φ, since the elements of Φ vanish
on ∂Ω (see Bertoluzza [2003]). One of the consequences of (26) is that the
seminorm ||| · ||| is indeed a norm. In fact, given vh ∈ Sh and letting ϕ ∈ Φδ

given by (26), provided (22) holds, it can be shown (see Bertoluzza [2003])
that

||vh||0,Ω ≤ C(|||vh|||+ ||ϕ||Φ) ≤ C|||vh|||. (27)

We shall discuss in the following sections whether and when this assump-
tion is satisfied. We anticipate however that this will be another easy condi-
tion, that could be roughly summarized by: on each face f of each ∂Ωs the
mesh T Γ s

δ (induced by T Σ
δ ) is coarser than the two meshes T Γ s

h (induced by
the two T s

h relative to the sub-domains having f in common).

3 Basic Error Estimates

We are now ready to analyze the problem (11) and derive abstract error
estimates for it.

We start by looking in more detail to the operator Gs. Thanks to the
classical theory of mixed finite element (see Brezzi and Fortin [1991b]) we can
prove the following Lemma.

Lemma 1. Assume that the inf-sup condition (24) is satisfied, and let ϕ ∈
L2(Σ); then for every s = 1, ..., S

‖Gs(ϕ)‖h, 1
2 ,Γ s ≤ C‖ϕ‖h, 12 ,Γ s . (28)

We point out that the norm ‖ · ‖h, 12 ,Γ s , induced by the bilinear form
(u, v) →

∑
T∈T Γs

h

∫
T
h−1

T u v dx plays the role of a discrete H1/2(Γ s) norm.
Indeed we have the following lemma.
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Lemma 2. The following inverse inequality holds: for all θs
h ∈ Θs

h

‖θs
h‖H1/2(Γ s) ≤ C‖θs

h‖h, 12 ,Γ s (29)

Proof. We shall actually prove that (29) holds for all θs
h ∈ L1

κ(T Γ s

h ). It is
well known that a function in L1

κ(T s
h ) is uniquely identified by its values

at a set {xi}i of nodes corresponding to the canonical Lagrange basis. Let
θs

h ∈ L1
κ(T Γ s

h ) and let wh ∈ L1
κ(T s

h ) be its finite element lifting, i.e., the
function verifying ws

h(xi) = θs
h(xi) at all nodes on Γ s and ws

h(xi) = 0 at
all other nodes. Clearly, ‖θs

h‖H1/2(Γ s) ≤ C‖ws
h‖H1(Ωs). Let us then bound

the H1(Ωs) norm of ws
h. By definition ws

h is different from 0 only on those
tetrahedra T ∈ T s

h which are adjacent to the boundary. Let K be one of such
tetrahedra and let Ti ∈ T Γ s

h , i = 1, . . . ,m be the triangles that share one or
more nodes with K. Thanks to usual arguments, we can write:

‖ws
h‖2H1(K) ≤ Ch−1

K ‖ws
h‖2L2(∂K) ≤ C

m∑
i=1

h−1
Ti
‖ws

h‖2L2(Ti)
.

Adding with respect to all elements K adjacent to Γ s, we obtain that

‖ws
h‖H1(Ωs) ≤ C‖θs

h‖h, 12 ,Γ s ,

which implies (29).

Remark 1. Note that if we had assumed the quasi-uniformity of the triangula-
tion T Γ s

h , then (29) could easily be obtained by space interpolation, using the
standard inverse inequality between the H1 and the L2 norms. This is how-
ever not the case, and in the above proof we only made use of the regularity
of the mesh.

Lemma 2 trivially implies the continuity of Gs from L2(Γ s) (endowed with
the norm ‖ · ‖h, 12 ,Γ s), to H1/2(Γ s). However a stronger result holds, stated in
the following theorem

Theorem 1. Gs(·) is continuous from H1/2(Γ s) to H1/2(Γ s):

‖Gs(ϕ)‖H1/2(Γ s) ≤ C‖ϕ‖H1/2(Γ s). (30)

Proof. First, we introduce the Clément interpolant θs
I ∈ Θs

h of θs = ϕ|Γ s ,
which gives (see Clément [1975])

‖θs
I‖H1/2(Γ s) ≤ C‖θs‖H1/2(Γ s)

‖θs − θs
I‖h, 12 ,Γ s ≤ C‖θs‖H1/2(Γ s).

(31)

Since Gs(·) is linear and using the triangle inequality, we have

‖Gs(θs)‖H1/2(Γ s) ≤ ‖Gs(θs − θs
I)‖H1/2(Γ s) + ‖Gs(θs

I)‖H1/2(Γ s) = I + II.
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Making use of Lemma 2, Lemma 1 and (31), we get

I = ‖Gs(θ − θs
I)‖H1/2(Γ s) ≤ C‖Gs(θ − θs

I)‖h, 12 ,Γ s

≤ C‖θ − θs
I‖h, 12 ,Γ s

≤ C‖θ‖H1/2(Γ s).

Moreover, since Gs(θs
I) = θs

I and using (31), we have

II = ‖Gs(θs
I)‖H1/2(Γ s) ≤ C‖θ‖H1/2(Γ s),

giving (30).

We can now prove our error estimate. From the definition (10) and as-
sumption (27) we easily get that problem (11) has a unique solution. Let now
ψI be an interpolant of the exact solution u in Φδ. For every Ωs (s = 1, ..., S)
let us

I ∈ V s
h be defined as the unique solution of{

us
I = Gs(ψI) on Γ s

as (us
I , v

s
h) =

∫
Ωs g v

s
h dx ∀vs

h ∈ V s
h ∩H1

0 (Ωs).
(32)

It is obvious that (32) has a unique solution. Let uI be equal to us
I in each Ωs

(s = 1, ..., S). It is clear that uI ∈ Sh. We now set eh := uI − uh ∈ Sh. Using
the the definition (10) and adding and subtracting u we have:

|||eh|||2 = a (eh, eh) = a (uI − u, eh) + a (u− uh, eh) =: I + II. (33)

Using (11) and integrating a (u, eh) by parts in each Ωs we obtain

II = a (u− uh, eh) = −
S∑

s=1

∫
Ωs

g es
h dx+

S∑
s=1

∫
Γ s

∂u

∂ns
es

h dx−
S∑

s=1

∫
Ωs

g es
h dx

=
S∑

s=1

∫
Γ s

∂u

∂ns
es

h dx. (34)

As eh ∈ Sh, and using assumption (26) there will be a mother ηδ ∈ Φδ

with ‖ηδ‖Φ ≤ C|||eh|||, such that G(ηδ) = eh|Σ . Hence the continuity of ∂u/∂n,
and the fact that ηδ is single-valued on the skeleton Σ yield

II =
S∑

s=1

∫
Γ s

∂u

∂ns
(es

h − ηδ) dx =
S∑

s=1

∫
Γ s

∂u

∂ns
(Gs(ηδ)− ηδ) dx. (35)

We can now use the definition of Gs (see (15)) and subtract from ∂u/∂n
its best approximation µs

I , thus obtaining

II =
S∑

s=1

∫
Γ s

( ∂u
∂ns

− µs
I

)
(Gs(ηδ)− ηδ) dx. (36)
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We remember now that Gs(ηδ) = es
h on Γ s for all s. We also point out

that (thanks to (22)) we can assume that the mean value of ∂u/∂ns − µs
I on

each Γ s is zero, so that we can use the H1/2-seminorm of es and ηδ instead
of the norm in the estimate. Then we use Cauchy-Schwarz inequality, we use
(26) for ηδ, and (27) standard trace inequality in each Ωs for es to obtain

II ≤
S∑

s=1

|| ∂u
∂ns

− µs
I ||H−1/2(Γ s)

(
|es|H1/2(Γ s) + |ηδ|H1/2(Γ s)

)
≤
( S∑

s=1

|| ∂u
∂ns

− µs
I ||2H−1/2(Γ s)

)1/2

|||eh|||. (37)

It remains to estimate I. After the obvious

I = a (uI − u, eh) ≤ |||uI − u||| |||eh||| (38)

we have to estimate |||u − uI |||. Using the definition (32) of us
I we can apply

the usual theory for estimating the error for each Dirichlet problem in Ωs.
Thanks to (20) we have first

||u− us
I ||1,Ωs ≤ C

(
inf

vs
h∈V s

h

||u − vs
h||1,Ωs + ||u− us

I ||H1/2(Γ s)

)
. (39)

It is then clear that the crucial step is to estimate ||u − us
I ||H1/2(Γ s), for each

s.
To this aim let us introduce an interpolant χs

I ∈ Θs
h of u|Γ s . We can write

‖u− us
I‖H1/2(Γ s) ≡ ‖u− Gs(ψI)‖H1/2(Γ s)

≤ ‖u− χs
I‖H1/2(Γ s) + ‖χs

I − Gs(u)‖H1/2(Γ s) (40)
+‖Gs(u)− Gs(ψI)‖H1/2(Γ s) (41)

Since χs
I = Gs(χs

I) and using Theorem 1, we easily get ‖χs
I−Gs(u)‖H1/2(Γ s) =

‖Gs(χs
I − u)‖H1/2(Γ s) ≤ C‖u− χs

I‖H1/2(Γ s). By a similar argument we obtain
‖Gs(u − ψI)‖H1/2(Γ s) ≤ ‖u− ψI‖H1/2(Γ s).

We can then collect (33)-(38) and (39)–(41) in the following theorem.

Theorem 2. Assume that the assumptions of Section 2 on the decomposition
and on the discretizations are satisfied. Assume that the operators Gs are
constructed as in (14)-(16). Let u be the exact solution of (1) and uh be the
solution of (11). Then we have

|||u − uh|||2 ≤ C

S∑
s=1

(
inf

vs
h∈V s

h

||u − vs
h||21,Ωs + inf

µs
h∈Ms

h

|| ∂u
∂ns

− µs
h||2H−1/2(Γ s)

)
+ inf

ϕδ∈Φδ

||u− ϕδ||2H1/2(Σ). (42)
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4 Examples and Remarks

In this section we want to show an example of finite element discretizations
that satisfy the abstract assumptions of Section 2, and derive the correspond-
ing error bounds in terms of suitable powers of h.

We do not discuss the assumptions on the decomposition of Ω into the
Ωs. We just remark once more that it does not need to be compatible: for
instance, the intersection of the closures of two different Ωs can be a face of
one of them and only a piece of a face of the other.

We discuss instead the choice of the finite element spaces Φδ, V s
h , and M s

h.
Assume that we are given an integer number k ≥ 1.
For every T in the triangulation T Σ

δ of the skeleton Σ we choose PT :=
Pk(T ), the space of polynomials of degree ≤ k on T . The space Φδ, according
to (17), becomes then

Φδ := {ϕ ∈ Φ such that ϕ|T ∈ Pk(T ), T ∈ T Σ
δ } = L1

k(T Σ
δ ) ∩ Φ (43)

(we recall that the elements of Φ have to vanish on ∂Ω so we need to take the
intersection of L1

k(T Σ
δ ) with Φ in order to properly define Φδ). For each s and

for every T in the triangulation T Γ s

h of Γ s we take instead as QT the space
QT := Pk−1(T ). According to (21) the space M s

h becomes then

M s
h := {µ ∈ L2(Γ s) : µ|T ∈ Pk−1(T ), T ∈ T Γ s

h } = L0
k(T Γ s

h ). (44)

We point out that Φδ is made of continuous functions, while M s
h is made of

functions that are, a priori, totally discontinuous from one element to another.
The choice of each V s

h will be slightly more elaborate. For each tetrahedron
K ∈ T s

h with no faces belonging to Γ s we take PK := Pk. If instead K has a
face f on Γ s we consider the cubic function bf on K that vanishes on the three
remaining internal faces of K, and we augment the space Pk with the space
Bf

k+2 obtained multiplying bf times the functions in Qf ≡ Pk−1(f) (that is
the space of polynomials of degree ≤ k − 1 on f : remember that the face f
will be one of the triangles T ∈ T Γ s

h ). If K has another face on Γ s we repeat
the operation, augmenting further the space Pk. In summary

PK := Pk(K) + {
⊕

f⊂Γ s

Bf
k+2} ≡ Pk + {

⊕
f⊂Γ s

bfPk−1(f)}. (45)

We note that
⊕

bfPk−1(f) is a direct sum, but its sum with Pk(K) is not
direct whenever k ≥ 3. This however will not be a problem for the following
developments.

We can now discuss the various abstract assumptions that have been made
in Section 2. To start with, condition (22) is obviously satisfied. Similarly, (20)
holds as shown for instance in Bernardi et al. [to appear]. We consider then
the inf-sup condition (24).

Lemma 3. Let M s
h and Θs

h be constructed as in (44) and in (19) with (45),
respectively. Then the inf-sup condition (24) holds true.
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Proof. For every µs
h ∈M s

h we construct vs
h ∈ V s

h as

vs
h =

∑
T∈T Γ s

h

hT bT µ
s
h (46)

where as before bT is the cubic function on K (the tetrahedron having T as
one of its faces) vanishing on the other three faces of K and having mean
value 1 on T . It is not too difficult to check that

||µs
h||h,− 1

2 ,Γ s ||vs
h||h, 12 ,Γ s ≤ C

∫
T Γs

h

vs
hµ

s
h (47)

that is precisely the inf-sup condition (24) that we need.

We consider now the other inf-sup that is involved in the present scheme
(although we did not write it as an inf-sup), that is the bound on the mother
(26). By applying the technique of Babuska [1973] it is not difficult to realize
that if T Σ

δ is “coarse enough” on each face, compared with the meshes of the
two sub-domains having that face in common, then

inf
ϕδ∈L1

k(T Γs

δ )\{0}
sup

µs
h∈Ms

h\{0}

∫
Γ s ϕδ µ

s
h dx

||µs
h||H−1/2(Γ s) ||ϕδ||H1/2(Γ s)

> γ0. (48)

It is now easy to see that (48) implies (26): let vs
h ∈ Sh, then, by definition,

there exists ϕδ ∈ Φδ such that vs
h|Σ = ϕδ. Letting ϕ̌s = (1/|Γ s|)

∫
Γ s ϕδdx we

have that ϕδ − ϕ̌s ∈ L1
k(T Γ s

δ ). Let now µ∗
h ∈M s

h be the element that realizes
the supremum in (48) for such an element of L1

k(T Γ s

δ ). Using (48), and then
(14), we obtain

γ0||µ∗
h||H−1/2(Γ s) ||ϕδ − ϕ̌s||H1/2(Γ s) ≤

∫
Γ s

µ∗
h (ϕδ − ϕ̌s) dx (49)

=
∫

Γ s

µ∗
h Gs(ϕδ − ϕ̌s) dx. (50)

Now, since ϕδ−ϕ̌s has zero mean value on Γ s, the same is true for Gs(ϕδ−ϕ̌s)
(see (14) and (22)). Then, denoting by v̌s = (1/|Γ s|)

∫
Γ s v

s
hdx the average of

vs
h on Γ s, we have∫

Γ s

µ∗
h Gs(ϕδ − ϕ̌s) dx =

∫
Γ s

µ∗
h (vs

h − v̌s) dx

≤ ||µ∗
h||H−1/2(Γ s) |vs

h|H1/2(Γ s)

≤ ||µ∗
h||H−1/2(Γ s) |vs

h|1,Ωs

that, since |ϕδ|H1/2(Γ s) = |ϕδ − ϕ̌s|H1/2(Γ s) � ‖ϕδ − ϕ̌s‖H1/2(Γ s), joined with
(49) immediately implies (26).

We can collect the previous results, together with the abstract error esti-
mates of the previous section, in the following theorem.
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Theorem 3. Assume that the assumptions on the decompositions T Σ
δ and

T s
h of Section 2 are satisfied, and assume that the spaces Φδ, M s

h and V s
h are

defined as in (43), (44) and (18) with (45), respectively. Assume finally that
(48) holds. Then we have

|||uh − u||| ≤ C (|h|k + |δ|k)||u||k+1,Ω (51)

The proof follows immediately from Theorem 1, the results of this section,
and usual approximation estimates.

We end this section with some observations on the actual implementation
of the method when the bubble stabilization (45) is used.

Indeed, let us see how the computation of the generation operators Gs

can be performed in practice. Assume that we are given a function ϕ in, say,
L2(Γ s). We recall that, to compute θ̃s

h = Gs(ϕ), we have to find the pair
(θ̃s

h, µ̃
s
h) ∈ Θs

h ×M s
h such that∫

Γ s

(ϕ− θ̃s
h)µs

h dx = 0 ∀µs
h ∈M s

h, (52)

∑
T∈T Γ s

h

∫
T

h−1
T (ϕ− θ̃s

h) θs
h dx+

∫
Γ s

µ̃s
h θ

s
h dx = 0 ∀θs

h ∈ Θs
h. (53)

We also recall that, with the choice (45), the space Θs
h can be written as Θs

h =
L1

k(T Γ s

h ) + Bk+2(T Γ s

h ) where L1
k(T Γ s

h ) is, as before, the space of continuous
piecewise polynomials of degree k on the mesh T Γ s

h , and Bk+2(T Γ s

h ) is the
space of bubbles of degree k+2, always on T Γ s

h . In order to write is as a direct
sum we introduce the space

W s = {θs
h ∈ Θs

h such that
∫

Γ s

θs
h µ

s
hdx = 0 ∀µs

h ∈M s
h} (54)

We can then split in a unique way θ̃s
h = w̃+b̃ with w̃ ∈ W s and b̃ inBk+2(T Γ s

h ).
It is now clear that b̃ can be computed immediately from (52) that becomes:∫

Γ s

(ϕ− b̃)µs
h dx = 0 ∀µs

h ∈M s
h. (55)

Once b̃ is known, one can compute w̃ from (53) that easily implies∑
T∈T Γ s

h

∫
T

h−1
T (ϕ− w̃)w, dx =

∑
T∈T Γ s

h

∫
T

h−1
T b̃ w, dx ∀w ∈W s. (56)

In this way the saddle point problem (52)-(53) splits into two smaller sub-
problems, each with a symmetric and positive definite matrix. In particular
(55) can be solved element by element, so that (56) is the only true system to
be solved.
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5 Relaxing the continuity of the Mothers

One of the main advantages of the present method (and in general of all
non conforming domain decomposition methods) is the freedom given by the
possibility of meshing and treating each sub-domain independently of the
others. In our approach however, the discretization Φδ of H1/2(Σ) is required
to be continuous. Such request can be relaxed by defining Φδ face by face and
asking for continuity within each face but allowing the elements of Φδ to jump
across the boundary between two adjacent faces. More precisely, considering a
splitting of the skeleton Σ in disjoint faces Σ = ∪f (with f = Γ s∩Γ � for some
s, � = 1, . . . , S) we can introduce for each face a family of triangulations T f

δ

and consider a corresponding space Φf
δ ⊂ H1/2(f) of piecewise polynomials.

The global space Φδ could then be defined by

Φδ = {ϕδ ∈ L2(Σ) with ϕδ|f ∈ Φf
δ for all faces f of Σ}.

Such a choice has several advantages, in particular from the point of view
of implementation. Each face can be meshed independently of the other faces.
Moreover, each node on Σ belongs to only one face f and therefore it only
“sees” two sub-domains. This greatly simplifies the data structure needed for
describing the elements of Φδ and the manipulations of such elements and of
their interaction with other elements.

The analysis presented in the previous section needs then to be modified
in order to take the discontinuity of the mothers into account. In particular,
if the elements of Φδ are discontinuous, the space Φδ is not a subspace of
H1/2(Σ), and therefore bounds like ‖Gs(u− ψI)‖H1/2(Γ s) ≤ ‖u− ψI‖H1/2(Γ s)

would not make sense. A completely revised analysis is carried out in a further
work in preparation, and results in an almost optimal estimate (with the loss
of a logarithmic factor). We just point out that the analysis of Section 3 could
still be applied if the space Φc

δ = Φδ ∩H1/2(Σ) has good approximation prop-
erties. Such space is the one where one should choose the best approximation
ψI . This is indeed a very special case: in general such space does not provide a
good approximation. It may very well happen that it contains only the func-
tion ϕδ = 0. A case in which the space Φc

δ does provide good approximation is
the case in which the meshes on two adjacent faces share a sufficiently fine set
of common nodes (in particular the case when, restricted to the common edge,
the nodes of the two (or more) meshes are one a subset of the other). Though
this is quite an heavy restriction to the freedom given by the possibility of us-
ing discontinuous mothers, such a case would still have many advantages from
the implementation point of view, while retaining the optimal error estimate.
Remark that the subspace Φc

δ would only be used for analyzing the method,
while its implementation fully relies on the discontinuous space Φδ.
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Summary. The FETI-DP domain decomposition method is extended to address
the iterative solution of a class of indefinite problems of the form (K−σ2M)x = b,
and a class of complex problems of the form (K − σ2M + iσD)x = b, where K,
M, and D are three real symmetric positive semi-definite matrices arising from
the finite element discretization of either second-order elastodynamic problems or
fourth-order plate and shell dynamic problems, i is the imaginary complex number,
and σ is a positive real number.

1 Introduction

Real linear or linearized systems of equations of the form

(K− σ2M)x = b (1)

and complex linear or linearized systems of equations of the form

(K− σ2M + iσD)x = b (2)

are frequent in computational structural dynamics. Eq. (1) is encountered, for
example, in the finite element (FE) simulation of the forced response of an
undamped mechanical system to a periodic excitation . In that case, K and M
are the FE stiffness and mass matrices of the considered mechanical system,
respectively, σ is the circular frequency of the external periodic excitation, b
is its amplitude, (K− σ2M) is the impedance of the mechanical system, and
x is the amplitude of its forced response. Such problems also arise during the
solution by an inverse shifted method of the generalized symmetric eigenvalue
problem Kx = ω2Mx associated with an undamped mechanical system. In
that example, K and M have the same meaning as in the previous case, (ω2,
x) is a desired pair of eigenvalue and eigenvector representing the square of
a natural circular frequency and the corresponding natural vibration mode of
the undamped mechanical system, respectively, and the shift σ2 is introduced
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to obtain quickly the closest eigenvalues to σ2. In both examples mentioned
here, the matrices K and M are symmetric positive semi-definite, and there-
fore (K − σ2M) rapidly becomes indefinite when σ is increased. Eq. (2) is
encountered in similar problems when the mechanical system is damped, in
which case i denotes the pure imaginary number satisfying i2 = −1 and D
denotes the FE damping matrix and is also symmetric positive semi-definite.

Domain decomposition based preconditioned conjugate gradient (PCG)
methods have emerged as powerful equation solvers in this field on both se-
quential and parallel computing platforms. While most successful domain de-
composition methods (DDMs) have been designed for the solution of symmet-
ric positive (semi-) definite systems, some have targeted indefinite problems of
the form given in (1) (Cai and Widlund [1992]) . The objective of this paper
is to present an alternative DDM that addresses both classes of indefinite (1)
and complex (2) problems, that is based on the FETI-DP (Farhat, Lesoinne
and Pierson [2000], Farhat et al. [2001]) DDM, and that is scalable when K,
M, and D result from the FE discretization of second-order elastodynamic
problems and fourth-order plate and shell dynamic problems.

2 The FETI-DP method

The dual-primal finite element tearing and interconnecting method (FETI-
DP) (Farhat, Lesoinne and Pierson [2000], Farhat et al. [2001]) is a third-
generation FETI method (for example, see Farhat [1991], Farhat and Roux
[1991]) developed for the scalable and fast iterative solution of systems of
equations arising from the FE discretization of static, dynamic, second-order,
and fourth-order elliptic partial differential equations (PDEs). When equipped
with the Dirichlet preconditioner (Farhat, Mandel and Roux [1994]) and ap-
plied to fourth-order or two-dimensional second-order problems, the condition
number κ of its interface problem grows asymptotically as (Mandel and Tezaur
[2001])

κ = O (1 + logm H

h
), m ≤ 2, (3)

where H and h denote the subdomain and mesh sizes, respectively. When
equipped with the same Dirichlet preconditioner and an auxiliary coarse prob-
lem constructed by enforcing some set of optional constraints at the subdo-
main interfaces (Farhat et al. [2001]), the condition number estimate (3) also
holds for second-order scalar elliptic problems (Klawonn, Widlund and Dryja
[2002]). The result (3) proves the numerical scalability of the FETI method-
ology with respect to all of the problem size, the subdomain size, and the
number of subdomains. More specifically, it suggests that one can expect
the FETI-DP method to solve small-scale and large-scale problems in similar
iteration counts. This in turn suggests that when the FETI-DP method is
well-implemented on a parallel processor, it should be capable of solving an
n-times larger problem using an n-times larger number of processors in almost
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a constant CPU time. This was demonstrated in practice for many complex
structural mechanics problems (for example, see Farhat, Lesoinne and Pierson
[2000] and Farhat et al. [2001] and the references cited therein).

Next, the FETI-DP method is overviewed in the context of the generic
symmetric positive semi-definite (static) problem

Kx = b, (4)

where K has the same meaning as in problems (1,2) and b is an arbitrary
vector, in order to keep this paper as self-contained as possible.

2.1 Non-overlapping domain decomposition and notation

Let Ω denote the computational support of a second- or fourth-order problem
whose discretization leads to problem (4), {Ω(s)}Ns

s=1 denote its decomposition
into Ns subdomains with matching interfaces Γ (s,q) = ∂Ω(s)

⋂
∂Ω(q), and let

Γ =
s=Ns⋃

s=1,q>s

Γ (s,q) denote the global interface of this decomposition. In the

remainder of this paper, each interface Γ (s,q) is referred to as an “edge”,
whether Ω is a two- or three-dimensional domain. Let also K(s) and b(s)

denote the contributions of subdomain Ω(s) to K and b, respectively, and let
x(s) denote the vector of dof associated with it.

Let Nc of the NI nodes lying on the global interface Γ be labeled “corner”
nodes (see Fig. 1), Γc denote the set of these corner nodes, and let Γ ′ = Γ\Γc.
If in each subdomain Ω(s) the unknowns are partitioned into global corner dof
designated by the subscript c, and “remaining” dof designated by the subscript
r, K(s), x(s) and b(s) can be partitioned as follows

K(s) =

[
K(s)

rr K(s)
rc

K(s)T

rc K(s)
cc

]
, x(s) =

[
x(s)

r

x(s)
c

]
and b(s) =

[
b(s)

r

b(s)
c

]
. (5)

The r-type dof can be further partitioned into “interior” dof designated by
the subscript i, and subdomain interface “boundary” dof designated by the
subscript b. Hence, x(s)

r and b(s)
r can be further partitioned as follows

x(s)
r =

[
x(s)

i x(s)
b

]T
and b(s)

r =
[
b(s)

i b(s)
b

]T
, (6)

where the superscript T designates the transpose.
Let xc denote the global vector of corner dof, and x(s)

c denote its restriction
to Ω(s). Let also B(s)

r and B(s)
c be the two subdomain Boolean matrices defined

by
B(s)

r x(s)
r = ±x(s)

b and B(s)
c xc = x(s)

c , (7)
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Ω1

Ω2

Ω3

C

C

C

C

Fig. 1. Example of a definition of corner points

where the ± sign is set by any convention that implies that
Ns∑
s=1

B(s)
r x(s)

r rep-

resents the jump of the solution x across the subdomain interfaces. Finally,
let

bc =
Ns∑
s=1

B(s)T

c b(s)
c . (8)

In Farhat, Lesoinne and Pierson [2000] and Farhat et al. [2001], it was
shown that solving problem (4) is equivalent to solving the following domain-
decomposed problem

K(s)
rr x(s)

r + K(s)
rc B(s)

c xc + B(s)T

r λ+ B(s)T

r Qb µ = b(s)
r , s = 1, ..., Ns (9)

Ns∑
s=1

B(s)T

c K(s)T

rc x(s)
r +

Ns∑
s=1

B(s)T

c K(s)
cc B(s)

c xc = bc, (10)

Ns∑
s=1

B(s)
r x(s)

r = 0, (11)

QT
b

Ns∑
s=1

B(s)
r x(s)

r = 0, (12)

where λ is an Nλ-long vector of Lagrange multipliers introduced on Γ ′ to
enforce the continuity (11) of the solution x, and µ is another vector of La-
grange multipliers introduced to enforce the optional linear constraints (12).
These optional constraints, a concept first developed in Farhat, Chen, Risler
and Roux [1998], are associated with a matrix Qb with NQ < Nλ columns
defined on Γ ′. The word “optional” refers to the fact that Eq. (12) and the
vector of Lagrange multipliers µ are not necessarily needed for formulating
the above domain-decomposed problem. Indeed, since the solution of problem
(4) is continuous across the subdomain interfaces, it satisfies Eq. (11) and
therefore satisfies Eq. (12) for any matrix Qb.

The domain-decomposed problem (9–12) was labeled “dual-primal” in
Farhat, Lesoinne and Pierson [2000] and Farhat et al. [2001] because it is
formulated in terms of two different types of global unknowns: the dual La-
grange multipliers represented by the vector λ, and the primal corner dof
represented by the vector xc.

In the remainder of this paper, the j-th column of Qb is denoted by qj .
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2.2 Interface and coarse problems

Let

K̃cc =
[
Kcc 0
0 0

]
, dr =

Ns∑
s=1

B(s)
r K(s)−1

rr b(s)
r ,

and b∗
c = bc −

Ns∑
s=1

(K(s)
rc B(s)

c )T K(s)−1

rr b(s)
r . (13)

After some algebraic manipulations aimed at eliminating symbolically x(s)
r ,

s = 1, ..., Ns, xc, and µ, the domain-decomposed problem (9–12) can be trans-
formed into the following symmetric positive semi-definite interface problem

(FIrr + F̃IrcK̃
∗−1

cc F̃T
Irc

)λ = dr − F̃IrcK̃
∗−1

cc b̃∗
c , (14)

where

FIrr =
Ns∑
s=1

B(s)
r K(s)−1

rr B(s)T

r , F̃Irc =
Ns∑
s=1

B(s)
r K(s)−1

rr K̃(s)
rc B(s)

c ,

K̃(s)
rc =

[
K(s)

rc B(s)
c B(s)T

r Qb

]
, b̃∗

c =
[

b∗
c

−QT
b dr

]
,

K̃∗
cc = K̃cc −⎡⎢⎢⎣

Ns∑
s=1

(K(s)
rc B(s)

c )T K(s)−1

rr (K(s)
rc B(s)

c )
Ns∑
s=1

(K(s)
rc B(s)

c )T K(s)−1

rr (B(s)T

r Qb)

Ns∑
s=1

(B(s)T

r Qb)T K(s)−1

rr (K(s)
rc B(s)

c )
Ns∑
s=1

(B(s)T

r Qb)T K(s)−1

rr (B(s)T

r Qb)

⎤⎥⎥⎦ .
(15)

The FETI-DP method is a DDM which solves the original problem (4)
by applying a PCG algorithm to the solution of the corresponding dual in-
terface problem (14). At the n-th PCG iteration, the matrix-vector product
(FIrr + F̃IrcK̃

∗−1

cc F̃T
Irc

)λn incurs the solution of an auxiliary problem of the
form

K̃∗
ccz = F̃T

Irc
λn. (16)

From the fifth of Eqs. (15), it follows that the size of this auxiliary problem
is equal to the sum of the number of corner dof, Ndof

c , and the number of
columns of the matrix Qb, NQ.

For NQ = 0 — that is, for Qb = 0, the auxiliary problem (16) is a coarse
problem, and K̃∗

cc is a sparse matrix whose pattern is that of the stiffness
matrix obtained when each subdomain is treated as a “superelement” whose
nodes are its corner nodes. This coarse problem ensures that the FETI-DP
method equipped with the Dirichlet preconditioner (see Section 2.3) is numer-
ically scalable for fourth-order plate and shell problems, and two-dimensional
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second-order elasticity problems (Farhat et al. [2001], Mandel and Tezaur
[2001]). However, for Qb = 0, the FETI-DP method equipped with the Dirich-
let preconditioner is not numerically scalable for three-dimensional second-
order problems.

For any choice of Qb �= 0, K̃∗
cc remains a sparse matrix. If Qb is constructed

edge-wise — that is, if each column of Qb is constructed as the restriction of
some operator to a specific edge of Γ ′ — the sparsity pattern of K̃∗

cc becomes
that of a stiffness matrix obtained by treating each subdomain as a superele-
ment whose nodes are its corner nodes augmented by virtual mid-side nodes.
The number of dof attached to each virtual mid-side node is equal to the
number of columns of Qb associated with the edge on which lies this mid-side
node. If NQ is kept relatively small, the auxiliary problem (16) remains a rel-
atively small coarse problem. This coarse problem was labeled “augmented”
coarse problem in Farhat, Lesoinne and Pierson [2000] in order to distinguish
it from the smaller coarse problem obtained with Qb = 0. Furthermore, each
column of Qb is referred to as an “augmentation coarse mode”. When these
augmentation coarse modes are chosen as the translational rigid body modes
of each edge of Γ ′, the FETI-DP method equipped with the Dirichlet pre-
conditioner becomes numerically scalable for three-dimensional second-order
problems (Klawonn, Widlund and Dryja [2002]).

2.3 Local preconditioning

Two local preconditioners have been developed so far for the FETI-DP
method:

1. The Dirichlet preconditioner which can be written as

F
D−1

Irr
=

Ns∑
s=1

W(s)B(s)
r

[
0 0
0 S(s)

bb

]
B(s)T

r W(s),

where S(s)
bb = K(s)

bb −K(s)T

ib K(s)−1

ii K(s)
ib , (17)

the subscripts i and b have the same meaning as in Section 2.1, and W(s)

is a subdomain diagonal scaling matrix that accounts for possible subdo-
main heterogeneities (Rixen and Farhat [1999]). This preconditioner is
mathematically optimal in the sense that it leads to the condition number
estimate (3).

2. The lumped preconditioner which can be written as

F
L−1

Irr
=

Ns∑
s=1

W(s)B(s)
r

[
0 0
0 K(s)

bb

]
B(s)T

r W(s). (18)

This preconditioner is not mathematically optimal in the sense defined
above; however, it decreases the cost of each iteration in comparison with
the Dirichlet preconditioner often with a modest increase in the iteration
count.
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3 The FETI-DPH method

In the context of Eq. (1), K(s)
rr becomes K(s)

rr − σ2M(s)
rr . Hence, the extension

of the FETI-DP method to problems of the form given in (1) or (2) requires
addressing the following issues:

1. K(s)
rr − σ2M(s)

rr is indefinite and therefore the dual interface problem (14)
is indefinite.

2. Independently of which interface points are chosen as corner points, K(s)
rr −

σ2M(s)
rr is in theory singular when σ2 coincides with an eigenvalue of the

pencil (K(s)
rr ,M

(s)
rr ).

3. How to construct augmentation coarse modes and extended Dirichlet and
lumped preconditioners that address the specifics of problems (1,2).

For problems of the form given in (2), only the third issue is relevant.
The first issue can be addressed by solving the dual interface problem (14) by
a preconditioned generalized minimum residual (PGMRES) algorithm rather
than a PCG algorithm. The second and third issues were addressed in Farhat,
Macedo and Lesoinne [2000] in the context of the basic FETI method and
acoustic scattering applications — that is, for the exterior Helmholtz scalar
problem where σ2 = k2 and k denotes the wave number. More specifically, a
regularization procedure was developed in that reference to prevent all sub-
domain problems from being singular for any value of the wave number k,
without destroying the sparsity of the local matrices K(s)

rr −k2M(s)
rr and with-

out affecting the solution of the original problem (1). Furthermore, for the
scalar Helmholtz equation, the coarse modes were chosen in Farhat, Macedo
and Lesoinne [2000] as plane waves of the form eikθT

j Xb , j = 1, 2, · · · , where
θj denotes a direction of wave propagation and Xb the coordinates of a node
on Γ . The resulting DDM was named the FETI-H method (H for Helmholtz).

Unfortunately, the regularization procedure characterizing the FETI-H
method transforms each real subdomain problem associated with Eq. (1) into
a complex subdomain problem. For acoustic scattering applications, this is
not an issue because the Sommerfeld radiation condition causes the original
problem to be in the complex domain. However, for real-valued problems such
as those represented by Eq. (1), the regularization procedure of the FETI-H
method is unjustifiable from computational resource and performance view-
points.

In practice, experience reveals that K(s)
rr −σ2M(s)

rr is non-singular as long as
K(s)

rr is non-singular. This observation is exploited here to design an extension
of the FETI-DP method for indefinite problems of the form given in (1) and
complex problems of the form given in (2) by:

1. Replacing the PCG solver by the PGMRES solver.
2. Adapting the Dirichlet and lumped preconditioners to exploit an interest-

ing characteristic of problems (1,2).
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3. Constructing a new augmentation coarse space that is effective for second-
order elastodynamic problems as well as fourth-order plate and shell dy-
namic problems.

The extension of FETI-DP outlined above is named here the FETI-DPH
method.

3.1 Adapted Dirichlet and lumped preconditioners

Consider the subdomain (impedance) matrix

Z(s)
rr = K(s)

rr − σ2M(s)
rr . (19)

For the applications outlined in the introduction, M(s)
rr is a mass matrix;

hence, in three dimensions and at the element level, this matrix is propor-
tional to h3. On the other hand, for the same applications, K(s)

rr is a stiffness
matrix; in three dimensions and at the element level, it is proportional to h
for second-order elasticity problems, and to 1/h2 for fourth-order plate and
shell problems. It follows that for a sufficiently fine mesh, Z(s)

rr is dominated
by K(s)

rr . These observations, the optimality of the Dirichlet preconditioner
and the computational efficiency of the lumped preconditioner established for
the solution of problem (4) suggest preconditioning the local matrices Z(s)

rr by
Dirichlet and lumped constructs that are based on K(s)

rr (see Section 2.3) and
not Z(s)

rr . When Rayleigh damping is used,

D(s)
rr = cKK(s)

rr + cMM(s)
rr , (20)

where cK and cM are two real constants, and the same reasoning can be
invoked to advocate preconditioning the local matrices

Z(s)
rr = K(s)

rr − σ2M(s)
rr + iσD(s)

rr (21)

by Dirichlet and lumped constructs that are based on (1+ iσcK)K(s)
rr and not

Z(s)
rr .

Finally, it is pointed out that the ad-hoc reasoning outlined above can
be mathematically justified, at least in the context of the scalar Helmholtz
equation (for example, see Klawonn [1995] and the references cited therein).

3.2 Wavy augmented coarse problem

Let r denote the residual associated with the iterative solution of the dual
interface problem (14). From Eqs. (9–12) and Eq. (14), it follows that

r = dr − F̃IrcK̃
∗−1

cc b̃∗
c − (FIrr + F̃IrcK̃

∗−1

cc F̃T
Irc

)λ =
Ns∑
s=1

B(s)
r x(s)

r , (22)
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which shows that the residual r represents the jump of the iterate solution
across the subdomain interfaces.

From Eq. (12), Eq. (15), Eq. (14) and Eq. (11), it follows that at each
iteration of the PGMRES algorithm applied to the solution of problem (14),
FETI-DPH forces the jump of the solution across the subdomain interfaces
to be orthogonal to the subspace represented by the matrix Qb. This feature
is a strategy for designing an auxiliary coarse problem which, when Qb is
well chosen, accelerates the convergence of a DDM (Farhat, Chen, Risler and
Roux [1998]). In this work, the search for a suitable matrix Qb is driven by
the following reasoning. Suppose that the space of traces on Γ ′ of the desired
solution of problem (1) is spanned by a set of orthogonal vectors {vjE}Nλ

j=1,
where the subscript E indicates that vjE is non-zero only on edge E ∈ Γ ′.
Then, the residual r defined in Eq. (22) can be written as

r =
Nλ∑
j=1

αjvjE , (23)

where {αj}Nλ
j=1 is a set of real coefficients. If each augmentation coarse mode

is chosen as
qj = vjE , j = 1, · · · , NQ, (24)

Eq. (12) simplifies to

αj = 0, j = 1, · · · , NQ. (25)

In that case, Eq. (25) implies that at each iteration of the PGMRES algorithm,
the first NQ components of the residual r in the basis {vjE}Nλ

j=1 are zero. If

a few vectors {vjE}
NQ

j=1, NQ << Nλ, that dominate the expansion (23) can
be found, then choosing these vectors as coarse augmentation modes can be
expected to accelerate the convergence of the iterative solution of the dual
interface problem (14). Hence, it remains to exhibit such a set of orthogonal
vectors vjE and construct a computationally efficient matrix Qb.

A second-order elastodynamic problem is governed by Navier’s displace-
ment equations of motion

µ∆u+ (Λ + µ)∇(∇ · u) + b = ρ
∂2u

∂t2
, (26)

where u ∈ R3 denotes the displacement (vector) field of the elastodynamic
system, Λ and µ its Lamé moduli, b ∈ R3 its body forces, ρ its density, and t
denotes time. If a harmonic motion is assumed, — that is, if

u(X, t) = v(X)e−iωt, (27)

where X ∈ R3 denotes the spatial variables, and ω denotes a circular fre-
quency, the homogeneous form of Eq. (26) becomes



28 Charbel Farhat, Jing Li, Michel Lesoinne, and Philippe Avery

µ∆v + (Λ + µ)∇(∇ · v) + ρω2v = 0. (28)

The free-space solutions of the above vector equation are

v = ap sin(kpθ ·X), v = ap cos(kpθ ·X), (29)
v = as1 sin(ksθ ·X), v = as1 cos(ksθ ·X), (30)
v = as2 sin(ksθ ·X), v = as2 cos(ksθ ·X), (31)

where θ ∈ R3 is an arbitrary vector of unit length (‖θ‖2 = 1), ap ∈ R3 is a
vector that is parallel to θ, (as1 , as2) ∈ R3 × R3 are two independent vectors
in the plane orthogonal to θ,

kp =

√
ρω2

Λ+ 2µ
, and ks =

√
ρω2

µ
. (32)

The free-space solutions (29) are known as the elastic pressure or longitudinal
waves, and the free-space solutions (30) and (31) are known as the elastic
shear or transverse waves.

Consider next the following fourth-order PDE associated with a given
elastic body

∆2u− m

D
ω2u = 0, where m = ρτ, D =

Eτ3

12(1− ν2)
, (33)

E denotes the Young modulus of the elastic body, ν its Poisson ratio, τ its
thickness, and all other variables have the same meaning as before. The reader
can check that the free-space solutions (29,30,31) with

kp = ks =4

√
m

D
ω2 (34)

are also free-space solutions of Eq. (33). The PDE (33) can model the har-
monic transverse motion of a plate. In that case, u is a scalar representing
the transverse displacement field. However, for the purpose of constructing
an augmented coarse problem for the FETI-DPH method, and only for this
purpose, it is assumed here that when u ∈ R3, Eq. (33) models the harmonic
motion of a shell in all three dimensions.

Hence, a general solution of either Eq. (28) or Eq. (33) can be written as

v =
∞∑

j=1

{
apj

(
c1j sin(kpθj ·X) + c2j cos(kpθj ·X)

)}

+
∞∑

j=1

{
as1j

(
c3j sin(ksθj ·X) + c4j cos(ksθj ·X)

)}

+
∞∑

j=1

{
as2j

(
c5j sin(ksθj ·X) + c6j cos(ksθj ·X)

)}
, (35)
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where θj ∈ R3 is an arbitrary vector of unit length defining the direction of
propagation of an elastic pressure or shear wave, c1j , c2j , c3j , c4j , c5j , and
c6j are real coefficients, and kp and ks are given by Eq. (32) for a second-
order elastodynamic problem and by Eq. (34) for a fourth-order plate or shell
dynamic problem. From Eq. (35) and Eq. (24), it follows that the desired
matrix Qb is composed of blocks of six columns. The columns of each block
are associated with one direction of propagation θj and one edge E of the
mesh partition, and can be written as

qbl

⎡⎣ 3(m− 1) + 1
3(m− 1) + 2
3(m− 1) + 3

⎤⎦ = apj sin(kpθj ·Xm),

qbl+1

⎡⎣ 3(m− 1) + 1
3(m− 1) + 2
3(m− 1) + 3

⎤⎦ = apj cos(kpθj ·Xm),

· · · · · · (36)

qbl+4

⎡⎣ 3(m− 1) + 1
3(m− 1) + 2
3(m− 1) + 3

⎤⎦ = as2j
sin(ksθj ·Xm),

qbl+5

⎡⎣ 3(m− 1) + 1
3(m− 1) + 2
3(m− 1) + 3

⎤⎦ = as2j
cos(ksθj ·Xm),

l = 6(j − 1) + 1, m = 1, · · · , NI −Nc,

where qb[3(m − 1) + 1] designates the entry of qb associated with the dof
in the x-direction attached to the m-th node on an edge E ∈ Γ ′, qb[3(m −
1) + 2] designates the entry associated with the dof along the y-direction,
qb[3(m − 1) + 3] designates the entry associated with the dof along the z-
direction, and Xm ∈ R3 denotes the coordinates of this m-th node. Hence, if
NE denotes the number of edges of the mesh partition, and Nθ the number of
considered directions of wave propagation, the total number of augmentation
coarse modes is given in general by NQ = 6NENθ. To these modes can be
added the edge-based translational rigid body modes as these are free-space
solutions of Eq. (28) when ω = 0.

In this paper, the number of directions is limited by Nmax
θ = 13, and

the directions θj are generated as follows. A generic cube is discretized into
3 × 3 × 3 points. A direction θj is defined by connecting the center point to
any of the other 26 points lying on a face of the cube. Since each direction
θj is used to define both a cosine and a sine mode, only one direction θj is
retained for each pair of opposite directions, which results in a maximum of
13 directions.
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4 Performance studies and preliminary conclusions

Here, the FETI-DPH method is applied to the solution of various problems
of the form given in (1) or (2) and associated with: (a) the discretization
by quadratic tetrahedral elements (10 nodes per element) of a wheel carrier
fixed at a few of its nodes, and (b) the discretization by linear triangular shell
elements of an alloy wheel clamped at a few center points (Fig. 2). When the
structure is assumed to be damped, Eq. (20) is used to construct D and cK
and cM are determined by requiring that the critical damping ratio of the
first 10 modes of the structure be equal in a least-squares sense to a specified
value, ξ. In all problems, the shift is set to σ2 = ω2 = 4π2f2, where ω2

is the square of a (possibly natural) circular frequency of the structure and
f is the corresponding frequency in Hz. To help the reader appreciate the
magnitude of a chosen shift value, the natural frequencies of both structures
are characterized in Table 1. In order to investigate the performance, potential,
and various scalability properties of the FETI-DPH method, various values of
σ2 are considered, three meshes with different resolutions are employed for the
wheel carrier second-order problem (504,375 dof, 1,317,123 dof, and 2,091,495
dof), and one mesh with 936,102 dof is employed for the alloy wheel fourth-
order shell problem. In all cases, the right-sides of problems (1,2) are generated
by a distributed load, the computations are performed on a Silicon Graphics
Origin 3800 system with 40 R12000 400 MHz processors, and convergence is
declared when the relative residual satisfies

REn =
‖(K− σ2M + iσD) xn − b‖2

‖b‖2
≤ 10−6. (37)

Fig. 2. FE discretizations of a wheel carrier (left) and an alloy wheel (right)

First, attention is directed to the wheel carrier undamped problem, and
for each generated mesh, Ns is chosen to keep the subdomain problem size
constant. Two frequencies, 500 KHz and 2 MHz, are considered: the latter
value of the shift σ2 arises, for example, when exciting the structure by its
200−th natural frequency, or shifting around it during the solution of an
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Table 1. Eigenvalue/Frequency partial spectrum of the pencil (K, M)

Wheel Carrier (2nd-order) Alloy Wheel (4th-order)

Mode Number Eigenvalue (ω2) Frequency Eigenvalue (ω2) Frequency

1 2.6e+11 8.2e+04 Hz 7.6e+05 1.4e+02 Hz
100 5.2e+13 1.1e+06 Hz 1.0e+09 5.1e+03 Hz
200 1.6e+14 2.0e+06 Hz 3.0e+09 8.7e+03 Hz
300 2.8e+14 2.6e+06 Hz 5.7e+09 1.2e+04 Hz
400 4.0e+14 3.2e+06 Hz 9.5e+09 1.5e+04 Hz
500 5.1e+14 3.5e+06 Hz
600 6.0e+14 3.9e+06 Hz

eigenvalue problem. The number of wave directions is set to Nθ = 2, and the
three translational rigid body modes are included in the construction of the
augmentation matrix Qb. The performance results of the FETI-DPH solver
obtained on Np = 12 processors are reported in Table 2 where Nitr records
the iteration count. For each considered frequency, the iteration count asso-
ciated with the chosen number of subdomains and chosen preconditioner is
almost independent of the mesh size, which highlights the numerical scalabil-
ity of the FETI-DPH method with respect to both the subdomain problem
size and the total problem size. For this second-order problem, the lumped
and Dirichlet preconditioners deliver similar CPU performances; hence, the
lumped preconditioner is preferable since it requires less memory.

Table 2. Performance of the FETI-DPH solver: wheel carrier, undamped, 2nd-order
problem; fixed subdomain problem size; Nθ = 2 (+ the three translational rigid body
modes); Np = 12

Frequency Shift (σ2) Mesh size Ns Nitr CPU Nitr CPU
Lumped Lumped Dirichlet Dirichlet

504,375 dof 250 63 64 s. 45 60 s.
5 × 105 Hz 9.8e+12 1,317,123 dof 600 70 207 s. 53 206 s.

2,091,495 dof 950 60 364 s. 45 358 s.

504,375 dof 250 137 123 s. 105 119 s.
2 × 106 Hz 1.6e+14 1,317,123 dof 600 174 483 s. 140 491 s.

2,091,495 dof 950 151 901 s. 118 887 s.

To illustrate the performance of the FETI-DPH solver for problems of
the form given in (2), the wheel carrier is next assumed to have a Rayleigh
damping. The mesh with Ndof = 1, 317, 123 is considered, the number of
subdomains is set to Ns = 600, the shift is set to σ2 = 105 Hz, the number
of wave directions is set to Nθ = 2, the three translational rigid body modes
are included in the construction of the augmentation matrix Qb, and the
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number of processors is set to Np = 16. For these parameters, the performance
results of FETI-DPH equipped with the lumped preconditioner are reported
in Table 3 for the undamped case (ξ = 0), and for realistic damping scenarios
(ξ = 1%, ξ = 2%, and ξ = 5%). These results suggest that the intrinsic
performance of FETI-DPH improves with the amount of damping. For the
undamped case, FETI-DPH operates in the real domain. This explains why
in that case, each iteration is 2.7 times faster than in the damped case where
FETI-DPH operates in the complex plane.

Table 3. Performance of the FETI-DPH solver: wheel carrier, damped, 2nd-order
problem; Ndof = 1, 317, 123; Ns = 600; σ2 = 105 Hz; lumped preconditioner; Nθ = 2
(+ the three translational rigid body modes); Np = 16

ξ cK cM Nitr CPU

0% 0 0 62 182 s.

1% 3.42e-6 17.9 51 403 s.

2% 6.85e-6 35.8 49 394 s.

5% 1.71e-5 89.5 48 384 s.

Next, attention is directed to the undamped alloy wheel problem to in-
vestigate the performance for a fourth-order shell problem of the FETI-DPH
solver equipped with the Dirichlet preconditioner. Two different frequencies,
5 KHz and 20 KHz, are considered: the upper value of the shift σ2 arises,
for example, when exciting the considered alloy wheel by a frequency that is
higher than its 400−th natural frequency, or shifting around that frequency
during the solution of an eigenvalue problem. The number of subdomains is
varied between Ns = 100 and Ns = 400 and the number of processors is fixed
to Np = 8. Table 4, where Ncoarse denotes the total size of the augmented
coarse problem, contrasts for each value of Ns the performance of FETI-DP
(with PGMRES as a solver) and the best performance of FETI-DPH obtained
by varying Nθ. The reported performance results suggest that the FETI-DPH
solver is numerically scalable for dynamic shell problems of the form given in
(1). They also highlight the superiority of FETI-DPH over FETI-DP which
fails to converge in a reasonable iteration count for large values of the shift
σ2.
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Table 4. FETI-DPH vs. FETI-DP: alloy wheel, undamped, 4th-order problem;
Ndof = 936, 102; Dirichlet preconditioner; Np = 8

Frequency Shift (σ2) Ns Nθ Ncoarse Nitr CPU

100 0 3,258 347 534 s.
100 3 7,275 122 265 s.
200 0 6,372 236 301 s.

5× 103 Hz 9.8e+8 200 2 11,853 116 200 s.
400 0 12,129 226 317 s.
400 2 21,924 123 271 s.

100 0 3,258 >400 –
100 5 9,512 330 680 s.
200 0 6,372 >400 –

2× 104 Hz 1.6e+10 200 5 17,581 261 564 s.
400 0 12,129 >400 –
400 3 27,270 265 706 s.
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Summary. The performance of multigrid methods for the standard Poisson prob-
lem and for the consistent Poisson problem arising in spectral element discretizations
of the Navier-Stokes equations is investigated. It is demonstrated that overlapping
additive Schwarz methods are effective smoothers, provided that the solution in the
overlap region is weighted by the inverse counting matrix. It is also shown that
spectral element based smoothers are superior to those based upon finite element
discretizations. Results for several large 3D Navier-Stokes applications are presented.

1 Introduction

The spectral element method (SEM) is a high-order weighted residual tech-
nique that combines the geometric flexibility of finite elements with the rapid
convergence properties and tensor-product efficiencies of global spectral meth-
ods. Globally, elements are coupled in an unstructured framework with in-
terelement coupling enforced through standard matching of nodal interface
values. Locally, functions are represented as tensor products of stable Nth-
order Lagrangian interpolants based on Gauss-Lobatto (GL) or Gauss (G)
quadrature points. For problems having smooth solutions, such as the incom-
pressible Navier-Stokes equations, the SEM converges exponentially fast with
the local approximation order N . Because of its minimal numerical dissipa-
tion and dispersion, the SEM is particularly well suited for the simulation of
flows at transitional Reynolds numbers, where physical dissipation is small
and turbulence-model dissipation is absent.

The two-level hierarchy of the spectral element discretization provides a
natural route to domain decomposition with several benefits. The loose C0

interelement coupling implies that the stencil depth does not increase with ap-
proximation order, so that interprocessor communication is minimal. The local
tensor-product structure allows matrix-vector products to be recast as cache-
efficient matrix-matrix products and also allows local subdomain problems to
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be solved efficiently with fast tensor-product solvers. Finally, the high-order
polynomial expansions provide a readily available sequence of nested grids
(obtained through successive reductions in polynomial degree) for use in mul-
tilevel solvers.

This paper presents recent developments in spectral element multigrid
(SEMG) methods. Our point of departure is the original work of Rønquist
and Patera [1987] and Maday and Muñoz [1988], who developed variational
SEMG for the two-dimensional Poisson problem using intra-element prolon-
gation/restriction operators coupled with Jacobi smoothing. The high-aspect-
ratio cells present in the tensor-product GL grid are a well-known source of
difficulty in spectral multigrid methods and have drawn much attention over
the past decade. We have developed multigrid smoothers in Lottes and Fis-
cher [2004] based on the overlapping additive Schwarz method of Dryja and
Widlund [1987] and Fischer et al. [2000]. We bypass the high-aspect-ratio
cell difficulty by solving the local problems directly using fast tensor-product
solvers; this approach ensures that the smoother cost does not exceed the
cost of residual evaluation. Here, we extend our SEMG approach from the
two-dimensional Laplacian to the more difficult consistent Poisson operator
that governs the pressure in the mixed IPN– IPN−2 spectral element formula-
tion of Maday and Patera [1989].

In the next section, we introduce the SE discretization for a model Pois-
son problem. The basic elements of our multilevel iterative procedures are
presented in Section 3, along with results for the Poisson problem. Extensions
to unsteady Navier-Stokes applications are described in Section 4.

2 Discretization of the Poisson Problem

The spectral element discretization of the Poisson problem in IRd is based on
the weighted residual formulation: Find u ∈ XN such that

(∇v,∇u)GL = (v, f)GL ∀v ∈ XN . (1)

The inner product (., .)GL refers to the Gauss-Lobatto-Legendre (GL) quadra-
ture associated with the space XN := [ZN ∩ H1

0 (Ω)], where ZN := {v ∈
L2(Ω)|v|Ωe ∈ IPN (Ωe)}. Here, L2 is the space of square integrable functions
on Ω; H1

0 is the space of functions in L2 that vanish on the boundary and
whose first derivative is also in L2; and IPN (Ωe) is the space of functions on
Ωe whose image is a tensor-product polynomial of degree ≤ N in the reference
domain, Ω̂ := [−1, 1]d. For d = 2, a typical element in XN is written

u(xe(r, s))|Ωe =
N∑

i=0

N∑
j=0

ue
ijh

N
i (r)hN

j (s) , (2)

where ue
ij is the nodal basis coefficient; hN

i ∈ IPN is the Lagrange polynomial
satisfying hN

i (ξj) = δij , where ξj , j = 0, . . . , N are the the GL quadrature
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Fig. 1. Spectral element configuration (E = 9, N = 8) showing Lagrange interpola-
tion points for functions in XN (left) and Y N (right). The shaded regions illustrate
the “minimal overlap” domain extension for the overlapping Schwarz smoothers

points (the zeros of (1−ξ2)L′
N (ξ), where LN is the Legendre polynomial of de-

gree N) and δij is the Kronecker delta function; and xe(r, s) is the coordinate
mapping from Ω̂ to Ωe. We assume Ω = ∪E

e=1Ω
e and that the intersection of

two subdomains (spectral elements) is an entire edge, a single vertex, or void.
Function continuity (u ∈ H1) is enforced by ensuring that nodal values on
element boundaries coincide with those on adjacent elements. Figure 1 illus-
trates a spectral element decomposition of the square using E = 9 elements.
The Gauss-Lobatto-based mesh on the left shows the nodal distribution for
XN . The Gauss-based mesh on the right is used for functions in YN , which
will be introduced in the context of the Stokes discretization in Section 4.

Computational Preliminaries. Because we employ iterative solvers, we
need an efficient procedure for evaluating matrix-vector products associated
with the bilinear forms in (1). As noted by Orszag [1980], tensor-product bases
play a key role in this respect, particularly for large N (i.e., N ≥ 8). Here,
we introduce several points that are central to our element-based solution
strategy.

As with standard finite element methods, we assume availability of both
local element-based and global mesh-based node numberings, with the local-
to-global map given by q(i1, . . . , id, e) ∈ {1, . . . , n̄}, for ik ∈ {0, . . . , N}, k ∈
{1, . . . , d}, and e ∈ {1, . . . , E}, where n̄ is the number of distinct global nodes.
LetQT be the n̄×E(N+1)d matrix with columns êq(i1,...,id,e), where êq denotes
the qth column of the n̄× n̄ identity matrix. Then the matrix-vector product
uL = Qu represents a global-to-local mapping for any function u(x) ∈ XN ,
and the bilinear form on the left of (1) can be written

(∇v,∇u) = vTQTALQu, (3)
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where AL=block-diag(Ae)E
e=1 is the unassembled stiffness matrix comprising

the local stiffness matrices, Ae, and QT and Q correspond to respective gather
and scatter operations. In practice the global stiffness matrix, A := QTALQ,
is never formed. One simply effects the action of A by applying each matrix
to a vector through appropriate subroutine calls.

In the SEM, computational efficiency dictates that local stiffness matrices
should also be applied in matrix-free form. The local contributions to (3) are

(∇v,∇u)e
GL = (ve)TAeue = (ve)T

(
D1

D2

)T(
Ge

11 G
e
12

Ge
12 G

e
22

)(
D1

D2

)
ue, (4)

with respective geometric factors and derivative operators,

Ge
ij :=

(
B̂ ⊗ B̂

)[ d∑
k=1

∂ri

∂xk

∂rj

∂xk

]e

Je, D1 := (I ⊗ D̂), D2 := (D̂ ⊗ I). (5)

Here, ve and ue are vectors containing the lexicographically ordered nodal
basis coefficients {ve

ij} and {ue
ij}, respectively; B̂=diag(ρk)N

k=0 is the one-
dimensional mass matrix composed of the GL quadrature weights; and D̂ is
the one-dimensional derivative matrix with entries

D̂ij =
dhj

dr

∣∣∣∣
ξi

, i, j ∈ {0, . . . , N}2.

The Jacobian, Je, and metric terms (in brackets in (5)) are evaluated pointwise
at each GL quadrature point, (ξp, ξq), so that each of the composite geometric
matrices, Ge

ij , is diagonal.
The presence of the cross terms, Ge

12, implies that Ae is full and requires
storage of (N + 1)4 nonzeros for each spectral element if explicitly formed.
In the spectral element method, this excessive storage and work overhead is
avoided by retaining the factored form (5), which requires (to leading order)
storage of only 3E(N + 1)2 nonzeros and work of ≈ 8E(N + 1)3 per matrix-
vector product. The savings is more significant in 3D, where the respective
storage and work complexities are 6E(N + 1)3 and ≈ 12E(N + 1)4 for the
factored form, versus O(EN6) if A is explicitly formed. Moreover, the leading
order work terms for the factored form can be cast as efficient matrix-matrix
products, as discussed in detail by Deville et al. [2002]. These complexity
savings can be extended to all system matrices and are the basis for efficient
realizations of high-order weighted residual techniques.

If Ωe is a regular parallelepiped, the local stiffness matrix simplifies to a
separable form. For example, for an Le

x × Le
y rectangle, one would have

Ae =
Le

y

Le
x

B̂ ⊗ Â +
Le

y

Le
x

Â ⊗ B̂, Â := D̂T B̂D̂. (6)

This form has a readily computable (pseudo-) inverse given by the fast diag-
onalization method (FDM) of Lynch et al. [1964],
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A−1
e = (S ⊗ S)

[
Le

y

Le
x

I ⊗ Λ +
Le

y

Le
x

Λ⊗ I

]−1

(ST ⊗ ST ), (7)

where S is the matrix of eigenvectors and Λ the matrix of eigenvalues satisfying
ÂS = B̂SΛ and ST B̂S = I. The bracketed term in (7) is diagonal, and its
pseudo-inverse is computed by inverting nonzero elements and retaining zeros
elsewhere. For arbitrarily deformed elements, the discrete Laplacian cannot be
expressed in the tensor-product form (6), and the FDM cannot be used. For
the purposes of a preconditioner, however, it suffices to apply the FDM to a
regular parallelepiped of equivalent size, as demonstrated in Couzy [1995] and
Fischer et al. [2000]. Similar strategies for the case of nonconstant coefficients
are discussed by Shen [1996].

3 Multilevel Solvers

We are interested in methods for solving the global system Au = g. To intro-
duce notation, we consider the two-level multigrid sweep.

Procedure Two-Level: (8)

i) uk+1 = uk + σM(g −Auk), k = 0, . . . ,md − 1
ii) r = g −Aumd

iii) ẽ = σCPA
−1
C PT r

iv) ũ0 = umd + ẽ

v) ũk+1 = ũk + σM(g −Aũk), k = 0, . . . ,mu − 1
vi) If ||Aũmu − g|| < tol, set u := ũmu , quit.

Else, u0 := ũmu , go to (i).

Here M is the smoother, σ and σC are relaxation parameters, and md and mu

are the number of smoothing steps on the downward and upward legs of the
cycle, respectively. Steps (i) and (v) are designed to eliminate high-frequency
error components that cannot be represented on the coarse grid. The idea is
that the error after (ii), e := A−1r, should be well approximated by ẽ, which
lies in the coarse-grid space represented by the columns of P . The coarse-grid
problem, A−1

C , is solved directly, if AC is sufficiently sparse, or approximated
by recursively applying the two-level procedure to the AC system, giving rise
to the multigrid “V” cycle. The prolongation matrix P interpolates from the
coarse space to the fine nodes using the local tensor-product basis functions
for the coarse space.

If the two-level procedure is used as a preconditioner, we take u0 = 0,
md = 1, and mu = 0, and the procedure simplifies to the following.
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Procedure Preconditioner: (9)
i) u1 = σMg,

ii) r = g −Au1

iii) ẽ = σCPA
−1
C PT r

iv) u = u1 + ẽ, return.

The preconditioner can be viewed either as an application of the multigrid
V-cycle or as a two-level multiplicative Schwarz method (Smith et al. [1996]).
By simply replacing (ii) with r = g, we obtain a two-level additive Schwarz
method, which has the advantage of avoiding an additional multiplication
by A. This savings is important in the Navier-Stokes applications that we
consider in Section 4.

Smoothers for the Poisson Problem. Here, we review the SEMG smooth-
ing strategies considered for the Poisson problem in Lottes and Fischer [2004].
Our original intent was to base the smoother, M , on the additive overlapping
Schwarz method of Dryja and Widlund [1987], with local subdomain prob-
lems discretized by finite elements (FEs) having nodes coincident with the GL
nodes, as considered by Casarin [1997], Fischer [1997], and Pahl [1993]. By
using the fast diagonalization method to solve the local problems, however, we
are freed from the constraint of using FE-based preconditioners because the
cost depends only on the use of tensor-product forms and not on the sparsity
of the originating operator. Hence, we are able to consider subdomain prob-
lems derived as restrictions of the originating spectral element matrix, A, as
first suggested by Casarin [1997].

The use of Schwarz-based smoothing, which is arguably more expensive
than traditional smoothers, is motivated by several factors. First, it is not
practical to apply Gauss-Seidel smoothing in the SEM because the matrix en-
tries are not available (see (4)). The alternative of pointwise-Jacobi smoothing
was shown by Rønquist [1988] and Maday et al. [1992] not to scale for d > 1.
Specifically, the authors demonstrated a convergence factor of ρ = 0.75 for
d = 1, but only ρ = 1−c/N logN for d = 2. Second, while one can exploit the
SE-FE spectral equivalence established by Orszag [1980] to ostensibly convert
the SE problem into a FE problem and then apply traditional multigrid, the
FE problem inherits the difficulties of its SE counterpart, namely, the high-
aspect ratio cells that arise from the tensor-product of the one-dimensional
Gauss-Lobatto grids. Moreover, even if the GL-based FE problem could be
solved with low work, the iteration count would still be higher than what is
observed for the Schwarz-based approach. Third, to minimize cost, it is reason-
able to have a smoother whose cost is on par with that of residual evaluation
if it can substantially reduce the iteration count.

We illustrate the problem of high-aspect ratio cells by considering appli-
cation of the two-level procedure (8) to the model Poisson problem (1) dis-
cretized on the unit square with an 8N×8N array of bilinear finite elements.
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Table 1. MG method on FE problem

FE Smoother/ Coarse Iterations, 10−11 Reduction
Spacing No. Preconditioner Space N = 4 N = 8 N = 12 N = 16

Uniform a Jacobi N/2 39 38 38 38
b GSRB N/2 9 9 9 9
c H Schwarz N/2 40 41 42 42
d H Schwarz (W ) N/2 7 7 6 6

SE e Jacobi N/2 41 84 148 219
f GSRB N/2 11 28 46 65
g H Schwarz N/2 40 43 47 52
h H Schwarz (W ) N/2 6 7 7 9

Iteration counts for four different smoothing strategies are shown in Table 1.
Jacobi implies M−1:=diag(A); GSRB is a Gauss-Seidel sweep with the nodes
ordered into two maximally independent (“red-back”) subsets; and H Schwarz
and H Schwarz(W ) correspond to the hybrid Schwarz-based smoothers intro-
duced below. In all cases, σ is chosen such that the maximum eigenvalue of
σMA is unity, and σC = 1. The coarse system is solved directly and is based
on the same FE discretization, save that, in each direction, every other nodal
point is discarded. The first set of results is for uniformly sized elements of
length 1/8N on each side. Resolution-independent convergence is obtained
for each of the smoothing strategies, with GSRB and H Schwarz(W ) being
the most competitive. Although H Schwarz(W ) has a lower iteration count,
GSRB requires less work per iteration, and the two are roughly equal in com-
putational cost. The second set of results is for an 8N×8N array of bilinear
elements whose vertices coincide with the GL node spacing associated with an
8×8 array of spectral elements of order N . In this case, the pointwise Jacobi
and GSRB smoothers break down as N is increased. Only H Schwarz(W )
retains performance comparable to the uniform grid case. We note that line-
based relaxation strategies proposed by Shen et al. [2000] and Beuchler [2002]
also compensate for the high-aspect-ratio cell difficulty. For the values of N
considered here, however, the hybrid Schwarz approach is likely to be faster, at
least on cache-based architectures, where the matrix-matrix product-oriented
fast-diagonalization method is very effective.

Our hybrid Schwarz strategy is based on a multiplicative combination of
an additive Schwarz smoother at the fine scale and a coarse-grid correction.
The smoother, originally due to Dryja and Widlund [1987], is written as

M :=
E∑

e=1

RT
e A

−1
e Re. (10)

Here, Re is the standard Boolean restriction matrix that extracts from a global
nodal vector those values associated with the interior of the extended sub-
domain Ω̄e. In all cases, Ω̄e is an extension of Ωe that includes a single row
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(a) Application of M (b) Coarse solver after (a)

(c) Application of WM (d) Coarse solver after (c)

Fig. 2. Error plots for the hybrid Schwarz preconditioner and coarse solve, with
NC = N/2 and (E, N) = (4, 16), applied to a random initial guess

(or plane, in 3D) of nodal values in each of 2d directions. as illustrated in
Fig. 1 (left). RT

e extends by zero the vector of nodal values interior to Ω̄e

to a full length vector. Multiplication by A−1
e is effected by using the fast

diagonalization method similar to (7). In a preprocessing step, one assembles
one-dimensional stiffness and mass matrices, A∗ and B∗ (∗ = x, y or z), for
each space dimension, 1, . . . , d; restricts these to the relevant ranges using a
one-dimensional restriction matrixRe

∗; and solves an eigenvalue problem of the
form ((Re

∗)
TA∗R

e
∗)S

e
∗ = ((Re

∗)
TB∗R

e
∗)S

e
∗Λ

e
∗ to obtain the requisite eigenpairs

(Se
∗ , Λ

e
∗). Because the spectral elements are compactly supported, the prepro-

cessing step requires knowledge only of the size of the elements on either side
of Ωe, in each of the d directions. For subdomains that are not rectilinear, Ae

is based on average lengths in each direction.
We have found it important to weight the solutions in the overlap region

by the inverse of the diagonal counting matrix

C :=
E∑

e=1

RT
e Re. (11)

The entries of C enumerate the number of subdomains that share a particu-
lar vertex. Setting W = C−1 gives rise to the weighted overlapping Schwarz
smoother MW := WM . Although convergence theory for the weighted
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Schwarz method is yet to be developed, the methodology of Frommer and
Szyld [2001] should be applicable to this setting as well. In addition to reduc-
ing the maximum eigenvalue of MA (which, by simple counting arguments, is
maxCii; see Smith et al. [1996]), multiplication by W significantly improves
the smoothing performance of the additive Schwarz step. This latter point is
illustrated in Fig. 2, which shows the error when the two-level preconditioner
(9) is applied to random right-hand-side vector for a 2×2 array of spectral
elements with N=16. Figure 2(a) shows the error after a single application of
the additive Schwarz smoother (10), with σ=1. While the solution is smooth
in the interior, there is significant undamped error along the interface, par-
ticularly at the cross point. As noted by Lottes and Fischer [2004], the error
along the interface can be reduced by choosing σ = 1/4, but the overall error
is no longer smooth. In either case, the subsequent coarse-grid correction does
not yield a significant error reduction. By contrast, the error after application
of MW , seen in Fig. 2(c), is relatively smooth, and the coarse-grid correction
is very effective. Comparing the magnitudes in Figs. 2(b) and 2(d), one sees
a tenfold reduction in the error through the introduction of W .

Table 2 presents convergence results for the Poisson problem on the square
discretized with an 8×8 array of spectral elements. Case 2(a) shows results for
the unweighted additive Schwarz preconditioner using an FE-based smoother.
This scheme is the Poisson equivalent to the method developed by Fischer
et al. [2000] for the pressure subproblem considered in the next section. For
all the other cases, Ae is based on a restriction of A rather than on an FE
discretization. Case 2(b) shows that this simple change considerably reduces
the iteration count. Enriching the coarse space from NC = 1 to N/2 and
incorporating the weight matrix W yields further reductions in iteration count
and work. (Because of symmetry requirements, W is applied as a pre- and
postmultiplication by W 1/2 for the preconditioned conjugate gradient, PCG,
cases). The work shown in the last column of Table 2 is an estimate of the
number of equivalent matrix-vector products required to reduce the error by
10−11. Rather than attempting to symmetrize the hybrid Schwarz method
(9), we simply switched to GMRES, which allowed W to be applied directly
during the summation of the overlapping solutions. Comparison of cases 2(f)
and 2(h) underscores the importance of weighting.

4 Extension to Navier-Stokes

Efficient solution of the incompressible Navier-Stokes equations in complex
domains depends on the availability of fast solvers for sparse linear systems.
For unsteady flows, the pressure operator is the leading contributor to stiff-
ness, as the characteristic propagation speed is infinite. Our pressure solution
procedure involves two stages. First, we exploit the fact that we solve similar
problems from one step to the next by projecting the current solution onto
a subspace of previous solutions to generate a high-quality initial approxima-
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Table 2. Iteration count for E=8×8 SE problem

Smoother/ Coarse Iterations, 10−11 Reduction Work
Method No. Preconditioner Space N = 4 N = 8 N = 12 N = 16 N = 16

PCG a A Schwarz (FE) 1 28 35 46 58 116
b A Schwarz 1 25 27 35 43 86
c A Schwarz N/2 26 26 26 27 81
d A Schwarz (W ) 1 17 24 33 43 86
e A Schwarz (W ) N/2 16 21 22 24 72

MG/ f H Schwarz N/2 21 23 24 25 100
GMRES g H Schwarz (W ) 1 14 20 29 36 108

h H Schwarz (W ) N/2 13 12 12 13 52

tion, as outlined in Fischer [1998]. We then compute the correction to this
approximation using a scalable iterative solver. Here, we extend the multigrid
methods presented in the preceding sections to computation of the pressure
in SE-based simulations of incompressible flows.

To introduce notation, we review the Navier-Stokes discretization pre-
sented in detail in Fischer [1997]. The temporal discretization is based on
a semi-implicit scheme in which the nonlinear term is treated explicitly and
the remaining unsteady Stokes problem is solved implicitly. Our spatial dis-
cretization is based on the IPN − IPN−2 spectral element method of Maday
and Patera [1989]. Assuming fn incorporates all terms explicitly known at
time tn, the IPN − IPN−2 formulation of the Navier-Stokes problem reads:
Find (un, pn) ∈ XN × YN such that

1
Re

(∇v,∇un)GL +
1
∆t

(v,un)GL − (∇ · v, pn)G = (v, fn)GL, (12)

(q,∇ · un)G = 0,

∀ (v, q) ∈ XN ×YN . The inner products (., .)GL and (., .)G refer to the Gauss-
Lobatto-Legendre (GL) and Gauss-Legendre (G) quadratures associated with
the spaces XN := [ZN ∩ H1

0 (Ω)]d and YN := ZN−2, respectively, and ZN is
the space introduced in conjunction with (1). The local velocity basis is given,
componentwise, by the form (2). The pressure is similar, save that the nodal
interpolants are based on the N -1 Gauss points, ηi ∈ (−1, 1), as illustrated in
Fig. 1 (right).

Insertion of the SEM bases into (12) yields a discrete Stokes system to be
solved at each step:

Hun −DT pn = Bfn, Dun = 0. (13)

H = 1
ReA + 1

∆tB is the discrete equivalent of the Helmholtz operator,
(− 1

Re∇2 + 1
∆t ); −A is the discrete Laplacian; B is the (diagonal) mass ma-

trix associated with the velocity mesh; D is the discrete divergence operator,
and fn accounts for the explicit treatment of the nonlinear terms. Note that
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the Galerkin approach implies that the governing system in (13) is symmetric
and that the matrices H, A, and B are all symmetric positive definite. We
have used bold capital letters to indicate matrices that interact with vector
fields.

The Stokes system (13) is advanced by using the operator splitting ap-
proach presented by Maday et al. [1990] and Perot [1993]. One first solves

Hû = Bfn + DT pn−1, (14)

which is followed by a pressure correction step

E δpn = − 1
∆t

Dû, un = û +∆tB−1DT δpn, pn = pn−1 + δpn, (15)

where E := DB−1DT is the Stokes Schur complement governing the pressure
in the absence of the viscous term.

E is the consistent Poisson operator for the pressure and is spectrally
equivalent to A. Through a series of tests that will be reported elsewhere,
we have found the following to be an effective multilevel strategy for solving
E. We employ (9) to precondition GMRES with a weighted additive Schwarz
smoother. The local problems are based on Ee := R̃eER̃

T
e , where the sub-

domains defined by the restriction matrices R̃e correspond to the minimal-
overlap extension illustrated in Fig. 1 (right). The coarse-grid problem, AC ,
is based on A with NC = N/2 (typically), which was found not only to be
cheaper but also better at removing errors along the element interfaces. At
all intermediate levels, A−1

C is approximated with a single V-cycle (8).
The local problems are solved using the fast diagonalization method, which

requires that Ee (and therefore E) be separable. In two dimensions, we need
to cast E in the form

E = Jy ⊗ Ex + Ey ⊗ Jx. (16)

For simplicity, we assume that we have a single element with Ω = Ω̂ and
ignore the details of boundary conditions. From the definition of E, we have

E = DxB
−1DT

x + DyB
−1DT

y . (17)

The divergence and inverse mass matrices have the tensor-product forms

Dx = (B̃ ⊗ B̃)(J̃ ⊗ D̃), Dy = (B̃ ⊗ B̃)(D̃ ⊗ J̃), B−1 = (B̂−1 ⊗ B̂−1).(18)

Here, B̃=diag(ρ̃i)N−1
i=1 consists of the Gauss-Legendre quadrature weights, and

J̃ and D̃ are respective interpolation and derivative matrices mapping from
the GL points to the G points,

J̃ij = hN
j (ηi), D̃ij =

dhN
j

dr

∣∣∣∣∣
r=ηi

. (19)
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(e)

Fig. 3. SE Navier-Stokes examples: (a) E = 1021 mesh, inlet profile, and vorticity
contours for roughness element; (b) E = 1536 mesh and (c) temperature contours
for buoyancy driven convection; (d) E = 2544 mesh and (e) coherent structures for
flow in a diseased carotid artery

Inserting (18) into (17) yields the desired form (16) with

Jx = Jy = B̃J̃ B̂−1J̃T B̃T , Ex = Ey = B̃D̃B̂−1D̃T B̃T . (20)

The extension to multiple elements follows by recognizing that the gather-
scatter operator used to assemble the local matrices can be written as Q =
Qy⊗Qx for a tensor-product array of elements. Following our element-centric
solution strategy, we thus generate Ee by viewing Ωe as being embedded in
a 3d array of rectilinear elements of known dimensions. Unlike Ae, the entries
of Ee are also influenced by the “neighbors of neighbors.” This influence,
however, is small and is neglected.
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Fig. 4. Iteration histories for FE-based two-level (std), weighted SE-based two-
level (wgt), additive multilevel (add), and multiplicative multilevel (hyb) schemes
for spectral elements simulations of order N=9: (a) hairpin vortex, E=1021; (b)
hemispherical convection, E=1536; and (c) carotid artery simulation, E=2544

Navier-Stokes Results. We turn now to application of spectral element
multigrid (SEMG) to the simulation of unsteady incompressible flows. In nu-
merous 2D and 3D Navier-Stokes test problems, we have found the additive
variant of the procedure outlined in the preceding section to be roughly two
to three times faster than the two-level additive Schwarz method developed
in Fischer et al. [2000]. A sample of these results is presented below.

We consider the three test cases shown in Fig. 3. The first case, Fig. 3(a),
is boundary-layer flow past a hemispherical roughness element at Reynolds
number Re=1000 (based on roughness height). The flow generates a pre-
transitional chain of hairpin vortices evidenced by the spanwise vorticity con-
tours shown in the symmetry plane. The second example, Fig. 3(b)-(c), is
buoyancy-driven convection in a rotating hemispherical shell having inner
radius 2.402 and outer radius 3.3. The Rayleigh number (based on shell thick-
ness) is Ra=20,000 and the Taylor number is Ta=160,000. The third case,
Fig. 3(d)-(e), simulates transitional flow in a diseased carotid artery. The se-
vere stenosis in the internal (right) branch results in high flow velocities and,
ultimately, transition to turbulence. Figure 3(e) shows the coherent structures
that arise just before peak systole.

Figure 4 shows the pressure iteration history for the first 85 timesteps of
the three examples, using the initial conditions of Fig. 3. For all cases, N=9
and the coarse problem is based on linear elements whose vertices are derived
from an oct-refinement of the SE mesh. Four methods are considered: std
refers to the two-level additive Schwarz method of Fischer et al. [2000]; wgt
is the same as std, save that Ee is based on a restriction of E, rather than an
FE-based discretization of the Poisson problem, and that the weight matrix
W is included; add is the same as wgt, save that three levels are employed,
with Nmid=5; hyb is the same as add, save that the multiplicative variant of
(9) is used. PCG is used for std and wgt, whereas GMRES is used for add
and hyb. Although hyb requires fewer iterations, add is the fastest method
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Table 3. add Avg. Iteration Count for Navier-Stokes Examples

Problem N=5 N=7 N=9 N=11 N=13 N=15 N=17

Hairpin Vortex 9.8 11.1 15.1 17.5 20.4 23.5 26.1

Spherical Conv. 8.2 7.8 8.3 8.9 9.9 10.9 11.6

Carotid Artery 18.5 20.6 23.7 26.0 29.3 32.5 36.0

Carotid (wgt) 16.5 22.2 30.0 39.5 48.4 59.4 65.8

because it requires only one product in E per iteration. The prominent spikes
in Fig. 4(b) result from resetting the projection basis set (Fischer [1998]).

The scalability of the three-level add method is illustrated in Table 3,
which shows the average iteration count over the last 20 steps for varying
N with Nmid=N/2. Order-independence is not assured in complex domains,
particularly if the mesh contains high aspect-ratio elements (Fischer [1997]).
The performance of add is nonetheless quite reasonable when one considers
that the number of pressure nodes varies by a factor of 64 in moving fromN =
5 to 17. For purposes of comparison, results for the wgt method are shown
for the carotid. The additional level of add clearly reduces order dependence.
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Summary. In this paper, we treat the numerical method for the Helmholtz equa-
tion in unbounded region with simple cylindrical or spherical shape outside some
bounded region and apply the method to voice generation problem. The numerical
method for the Helmholtz equation in unbounded region is based on the domain
decomposition technique to divide the region into a bounded region and the rest un-
bounded one. We then treat the approximation of the artificial boundary condition
given through the DtN mapping on the artificial boundary. We apply the finite ele-
ment approximation to discretize the problem. In applying the method to the voice
generation problem, it is essential to compute the frequency response function or
the formant curve. We give variational formulas for the resolvent poles with respect
to the variation of vocal tract boundary which determine the peaks of frequency re-
sponse function known as formants, and we propose the use of variational formulas
to design the location of formants.

1 Numerical Method for Exterior Helmholtz Problem

1.1 Formulation of Exterior Helmholtz Problem

We consider the following 2-dimensional exterior Helmholtz equation with un-
known function u as the mathematical model for the time stationary problem
of outgoing or radiation sound wave propagation in unbounded region outside
an obstacle:

−∆u− k2u = 0 in Ω = R2\O, (1)
∂u

∂n
= g on ∂Ω, (2)

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0, i =

√
−1, (3)

where Ω is the interior of the complement of a bounded obstacle O in R2

with smooth boundary ∂Ω on which the Neumann boundary condition (2) is
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imposed with an inhomogeneous data g. A real constant k is called a wave
number and the condition (3) is the Sommerfeld radiation condition at infin-
ity which excludes any unphysical incoming wave. In the case with tubular
cylindrical outside region, a similar formulation is possible with necessary
modification of boundary condition and radiation condition (see Section 2.2).

Related to this problem in unbounded region, we introduce a circular ar-
tificial boundary ΓR with radius R and decompose the original domain into
two sub-domains. We then consider the boundary value problem in the part
of bounded sub-domain given as

−∆u− k2u = 0 in ΩR ≡ Ω ∩BR, (4)
∂u

∂n
= g on ∂Ω, (5)

∂u

∂r
= Mu on ΓR, (6)

where BR ⊃⊃ O is a circular domain with radius R bounded by an artificial
circular boundary ΓR: BR = {(x, y) | r ≡

√
x2 + y2 < R} , and M is a

differential or pseudo-differential operator which we construct as a function
of the operator ∂2/∂θ2 of angular variable θ in order to make the problem
exactly or approximately equivalent to the original problem.

The exact solution u(r, θ) for (1)-(3) inBc
R is given by the following formula

with the Hankel function of the first kind of order n which we will denote in
this paper by H(1)(· ; n)(= H

(1)
n (·)):

u(r, θ) =
1
2π

∞∑
n=−∞

H(1)(kr;n)
H(1)(kR;n)

∫ 2π

0

u(R, φ)ein(θ−φ)dφ.

Using this expression, we introduce the exact Dirichlet-to-Neumann (DtN)
mapping as:

Mexactu(θ) ≡ k

2π

∞∑
n=−∞

H(1)′(kR;n)
H(1)(kR;n)

∫ 2π

0

u(R, φ)ein(θ−φ)dφ, (7)

which relates the Dirichlet data of the solution u on the artificial boundary
ΓR to the Neumann data on the same boundary. If we put M = Mexact in
(6), the problem (4)-(6) is equivalent to the original problem (1)-(3). The DtN
mapping can also be expressed as the function of the elliptic operator D2 as:

Mexact = MDtN (D2) = k
H(1)′(kR;

√
D2)

H(1)(kR;
√
D2)

, D ≡ −i∂/∂θ. (8)

1.2 Radiation Boundary Conditions

There have been many studies related to the analytical as well as numeri-
cal approximations of the DtN mapping. Among them, Engquist and Majda
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[1977], Engquist and Majda [1979] introduced a series of non-local approxi-
mate radiation boundary condition such as:

M1(D2) =
i
R

√
k2R2 −D2,

M2(D2) = M1(D2)− 1
2R

k2R2

(k2R2 −D2)

and so forth. Some local approximate radiation boundary conditions are well
used and they are given as

M1,1(D2) = ik,

M2,1(D2) = ik − 1
2R

.

Those are derived directly from the Sommerfeld radiation condition. Feng
[1983] introduced a series of local type operators such as

F3(D2) = ik − 1
2R

+
i

8kR2
− i

2kR2
D2,

F4(D2) = ik − 1
2R

+
i

8kR2
+

1
8k2R3

−
(

i
2kR2

+
1

2k2R3

)
D2.

Bayliss and Turkel [1980] also introduced in a systematic way a hierarchy of
local operators:

Ln =
n∏

j=1

(
∂

∂r
− ik +

4j − 3
2r

)
, n ≥ 1.

On the other hand, related to the finite element method, Kako and Kano
[1999] proposed a non-local approximation by a bounded operator as a higher
order correction:

MLK(D2) = ik − 3
2R

+
1
R

[
1 +

1
2ikR

(
1
4
−D2

)]−1

.

According to our numerical experiments, the exact DtN operator is the best
one when it is combined with the appropriate discrete approximation. In the
next subsection, we will briefly review the recent results of Nasir et al. [2003]
based on a mixed method approximation.

1.3 Finite Element Approximation

To formulate the finite element method for the Helmholtz problem, we in-
troduce a function spaces V ≡ H1(ΩR). Then the weak formulation of the
problem is to find u ∈ V such that
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a(u, v)− 〈u, v〉M = (g, v)∂Ω ∀v ∈ V (9)

with

a(u, v) =
∫

ΩR

(
∂u

∂r

∂v̄

∂r
+

1
r2
∂u

∂θ

∂v̄

∂θ
− k2uv̄

)
rdrdθ,

〈u, v〉M =
∫ 2π

0

(Mu)v̄ Rdθ, (f, g)∂Ω =
∫

∂Ω

f ḡdσ,

where M is one of the operators appeared in the previous section. Let us
introduce a finite dimensional subspace Vh of V . Then the finite element ap-
proximation is to find uh ∈ Vh such that

a(uh, vh)− 〈uh, vh〉M = (g, vh)∂Ω, ∀vh ∈ Vh. (10)

In the following, we will introduce the fictitious domain method combined
with a fast direct method. For this purpose, we firstly treat a special problem
with annulus region.

1.4 Fast Direct Method

In case that ΩR is an annulus region, we can make a separation of variables
with respect to the radial and angular coordinates, and by dividing the inter-
vals into nr subintervals in radial direction and into nθ in angular direction,
the finite element method gives a linear system:

BU = F (11)

with a separable matrix B = (bIJ ), a given vector f = (fI) and a solution
vector u = (uJ) where bIJ = a(ΦJ , ΦI)− 〈ΦJ , ΦI〉M and fI = (g, ΦI)∂Ω . The
matrix B is given by a tensor product form:

B = R2 ⊗T1 + R1 ⊗T2 − k2R1 ⊗T1 − enr
nr

enrT
nr

⊗M

with a tri-diagonal matrices Ri ∈ Cnr×nr (i = 1, 2) and circulant matrices
Ti (i = 1, 2) and M ∈ Cnθ×nθ . The matrix M corresponds to the radiation
boundary condition and en

j denotes the usual jth canonical basis vector of Rn.
Explicit forms for the matrices for Ri,Ti and M can be found, for example,
in Ernst [1996].

To solve the system (11), a fast direct solution method based on separation
of variables can be used by diagonalizing the circulant matrices. This leads to

(Inr ⊗QH)(R2 ⊗Λ1 + R1 ⊗Λ2 − k2R1 ⊗Λ1

−enr
nr

enrT
nr

⊗ΛM )(Inr ⊗Q)u = f ,

where Λi, i = 1, 2 and ΛM are diagonal matrices consisting of eigenvalues
of the corresponding circulant matrices and Q is the Fourier matrix with


