Arthur Beitler

Emulgieren mit mikroporösen Strukturen am Stoffsystem Öl/Wasser

Eine experimentelle Untersuchung von Emulgierparametern

Arthur Beitler Emulgieren mit mikroporösen Strukturen am Stoffsystem Öl / Wasser: Eine experimentelle Untersuchung von Emulgierparametern

ISBN: 978-3-8428-2238-2 Herstellung: Diplomica® Verlag GmbH, Hamburg, 2015

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtes.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Die Informationen in diesem Werk wurden mit Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden und der Verlag, die Autoren oder Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für evtl. verbliebene fehlerhafte Angaben und deren Folgen.

[©] Diplomica Verlag GmbH http://www.diplomica-verlag.de, Hamburg 2015

Danksagung

Meine besondere Danksagung gilt an Prof. Dr.-Ing. habil. Udo Fritsching und Prof. Dr.-Ing. habil. Lutz Mädler, die meine Untersuchungen begutachtet haben.

Für die hilfreiche und freundliche Unterstützung während meiner Ausarbeitung danke ich insbesondere Dipl.-Ing. Nils Hornig und Dipl.-Wi.-Ing. Benjamin Glasse, sowie den Mitarbeitern des IWT: Stiftung Institut für Werkstofftechnik in Bremen.

Bei dem Fachbereich Produktionstechnik an der Universität Bremen bedanke ich mich für die Bereitstellung der für diese Untersuchungen erforderlichen Geräte und Labore.

Arthur Beitler

Abbildungsverzeichnis

Abbildung 1:	: Intermolekulare Wechselwirkungskräfte in einem Öltropfen und eine gedachte resultierende Kraft F _R mit Wirkung zum Tropfeninneren	15
Abbildung 2:	Sichtbarer Unterschied zwischen einer Öl-in-Wasser-Emulsion und Öl-und-Wasser-Mischung.	16
Abbildung 3	Schematische Darstellung der Vorgänge in einer instabilen Öl-in-Wasser-Emulsion	17
Abbildung 4	Schematischer Aufbau eines Emulgatormoleküls mit hydrophilem und lipophilem Molekülteil	19
Abbildung 5	Abhängigkeit der Oberflächenspannung von der Emulgatorkonzentration mit CMC-Punkt und schematischer Darstellung der Emulgator-Aktivitäten	20
Abbildung 6	: Schematische Darstellung von Mizellen und der Stabilisierung eines Tropfens in einer O/W- und W/O-Emulsion mittels Emulgatormolekülen	22
Abbildung 7:	Unterschiedliche Mizellenstrukturen	23
Abbildung 8	: Drei Tropfen mit unterschiedlichen Randwinkeln θ zwischen Flüssigkeitstropfen und Feststoff	24
Abbildung 9	: Schematische Übersicht der vier grundsätzlichen mechanischen Emulgierverfahren	25
Abbildung 10	0: Schematische Darstellung eines Rotor-Stator-Systems	26
Abbildung 1	1: Schematische Darstellung des Emulgierens an einem Mikrokanalmodul	27
Abbildung 12	2: Schematische Darstellung des Premix-Membranemulgierens	28
Abbildung 1	3: Schematische Darstellung der Tropfenbildung und Tropfenablösung beim Membranemulgieren am Beispiel einer O/W-Emulsion mit wasserlöslichen Emulgatoren	31
Abbildung 14	4: Wirkende Kräfte an einem aus einer Pore austretenden Einzeltropfen	32
Abbildung 1:	5: Einfluss der Benetzungseigenschaft einer Membran am Beispiel einer O/W-Emulsion	33
Abbildung 10	6: Schematische Darstellung einer parabolischen Geschwindigkeitsverteilung u(r) für eine laminare Strömung eines Newtonschen Fluids in einem Rohr mit dem Radius r _{Rohr}	34
Abbildung 1'	7: Schematische Darstellung der Prozessgrößen beim Membranemulgieren in einem Strömungskanal	36

Abbildung 18:	Schematische Darstellung eines Messvorgangs der Oberflächenspannung eines Fluids mit der Wilhemy-Plattenmethode	37
Abbildung 19:	Schematische Darstellung der benetzten Platte im Querschnitt dargestellt	37
Abbildung 20:	Schematische Darstellung des Aufbaus einer PIV-Messung	38
Abbildung 21:	Schematische Darstellung des Prinzips der Laserbeugung an einer Partikelfraktion	40
Abbildung 22:	Rohrleitungs- und Instrumentenfließschema der Versuchsanlage	41
Abbildung 23:	Explosionsdarstellung des Plexiglas-Kanals mit Tiegel und Dichtungen	42
Abbildung 24:	Maße des Plexiglas-Kanals in mm	42
Abbildung 25:	Ermittelte Volumenströme \dot{V} bei unterschiedlicher Förderleistung P_{FL}	46
Abbildung 26:	Schematische Darstellung des Messbereiches in dem Plexiglas-Kanal während der PIV-Messung	48
Abbildung 27:	Übersicht der jeweiligen Geschwindigkeitsfunktion $u(h)$ zu einer Förderleistung P_{FL}	49
Abbildung 28:	Gemessene Oberflächenspannungen der Wasserproben des Reinigungsprozesses	51
Abbildung 29:	Tropfengrößenverteilung einer Wasserprobe, einer nicht geschüttelten Rohemulsion und zwei geschüttelte Rohemulsionen	53
Abbildung 30:	Kurzzeitstabilität einer mittels Tween 20 stabilisierten Emulsion während eines Zeitraumes von t = 4 Wochen	55
Abbildung 31:	Membran in Membranhalter aus Edelstahl eingespannt	56
Abbildung 32:	Membran in Membranhalter aus Glas eingeklebt	56
Abbildung 33:	Vergleich der Tropfenbildung und -ablösung anhand jeweils dreier Fotoaufnahmen der Emulgierzonen A und B	60
Abbildung 34:	Schematische Darstellung des Verhältnisses aus Membranhalterdurchmesser d_H und Membrandurchmesser d_M in Emulgierzone A und B	62
Abbildung 35:	Grafischer Vergleich der Modalwerte und der Sauterdurchmesser der durch die Förderpumpe mechanisch dispergierten Emulsionen bei veränderter Förderleistung von $P_{FL} = 10 \dots 100\%$	64
Abbildung 36:	Grafischer Vergleich der Modalwerte und der Sauterdurchmesser der durch die Förderpumpe mechanisch dispergierten Emulsionen bei veränderter Dispergierzeit von t = $2,5 \dots 40$ min	65

Abbildung 37:	Tropfengrößenverteilungen der O/W-Emulsionen; P. 2, p = 1 7 bar, $P_{FL} = 80\%$, $\phi = 0.60\%$.67
Abbildung 38:	Tropfengrößenverteilungen der O/W-Emulsionen; P. 3, p = 1 7 bar, $P_{FL} = 80\%$, $\varphi = 0.30\%$.68
Abbildung 39:	Tropfengrößenverteilungen der O/W-Emulsionen; P. 2, p = 3 bar, $P_{FL} = 20 \dots 100\%$; $\varphi = 0,60\%$.71
Abbildung 40:	Tropfengrößenverteilungen der O/W-Emulsionen; P. 2, P. 3 und p. 4, p = 7 bar, $P_{FL} = 80\%$; $\varphi_{P.2} = 0,60\%$; $\varphi_{P.3} = 0,30\%$; $\varphi_{P.4} = 0,15\%$.72
Abbildung 41:	Abhängigkeit des Modalwertes einer Tropfengrößenverteilung von dem eingesetzten Dispersphasenflux	.73
Abbildung 42:	Tropfengrößenverteilungen der O/W-Emulsionen; P. 3, p = 7 bar, $P_{FL} = 80\%$, 3 g Tween 20, 3 g Tween 65 und 0,7 g Tween 80, $\varphi = 0,30\%$.75
Abbildung 43:	Tropfengrößenverteilungen der O/W-Emulsionen; P. 3, $p = 0,2 \dots 1,0$ bar, P _{FL} = 30%, P _{FL} = 30% Premix	.78
Abbildung 44:	Tropfengrößenverteilungen der O/W-Emulsionen; P. 3, p = 1 7 bar, $P_{FL} = 30\%$, $P_{FL} = 30\%$ Premix	.79
Abbildung 45:	Abhängigkeit des Modalwertes einer Tropfengrößenverteilung einer O/W-Emulsion von dem Emulgierdruck; P. 3, p = 0,2 1,0 7,0 bar, $P_{FL} = 30\%$, $P_{FL} = 30\%$ Premix	.80
Abbildung 46:	Tropfengrößenverteilungen der O/W-Emulsionen; P. 4, p = 1 7 bar, $P_{FL} = 40\%$, $P_{FL} = 40\%$ Premix	.81
Abbildung 47:	Abhängigkeit des Sauterdurchmessers einer Tropfengrößenverteilung einer O/W-Emulsion von dem Emulgierdruck; P. 4, p = 1 7 bar, $P_{FL} = 40\%$, $P_{FL} = 40\%$ Premix	.83
Abbildung 48:	Tropfengrößenverteilungen der O/W-Emulsionen; P. 3, p = 0,5 bar, $P_{FL} = 10 \dots 50\%$, $P_{FL} = 30\%$ Premix	.84
Abbildung 49:	Tropfengrößenverteilungen der O/W-Emulsionen; P. 3, p = 3 bar, $P_{FL} = 30 \dots 100\%$, $P_{FL} = 30\%$ Premix	.85
Abbildung 50:	Tropfengrößenverteilungen der O/W-Emulsionen; P. 4, p = 1 bar, $P_{FL} = 20 \dots 60\%$, $P_{FL} = 40\%$ Premix	.87
Abbildung 51:	Abhängigkeit des Modalwertes einer Tropfengrößenverteilung einer O/W-Emulsion von der Förderleistung; P. 4, p = 1 bar, $P_{FL} = 20 \dots 60\%$, $P_{FL} = 40\%$ Premix	.88
Abbildung 52:	Tropfengrößenverteilungen der O/W-Emulsionen; P. 4, p = 7 bar, $P_{FL} = 20 \dots 100\%$, $P_{FL} = 40\%$ Premix	.89

Abbildung 53:	Tropfengrößenverteilungen der O/W-Emulsionen; P. 3, p = 1 7 bar, $P_{FL} = 60\%$, $P_{FL} = 50\%$ Premix	90
Abbildung 54:	Tropfengrößenverteilungen der O/W-Emulsionen; P. 4, p = 1 7 bar, $P_{FL} = 60\%$, $P_{FL} = 50\%$ Premix	91
Abbildung 55:	Vergleich des Sauterdurchmessers $d_{3,2}$ und der Breite b_N einer Tropfengrößenverteilung der an einer P. 3 und P. 4 Membran mittels des	
	Premix-Membranemulgierens erzeugten Emulsionen; $p = 1 \dots 7$ bar, $P_{FL} = 60\%$, $P_{FL} = 50\%$ Premix	93

Tabellen- und Anhangverzeichnis

Tabelle 1: Klassische Einteilung von dispersen Systemen nach W. O. Ostwald	13
Tabelle 2: Übersicht der drei unterschiedlichen Membranen	43
Tabelle 3: Übersicht der drei unterschiedlichen Emulgatortypen	44
Tabelle 4: Übersicht des jeweiligen Volumenstromes V und der jeweiligen mittleren Strömungsgeschwindigkeit u _m zugeordnet zu einer Förderleistung P _{FL} und Reynolds-Zahl Re	47
Tabelle 5: Kennwerte der Tropfengrößenverteilung einer Wasserprobe, einer nicht geschüttelten Rohemulsion und zwei geschüttelte Rohemulsionen	53
Tabelle 6: Übersicht der Parameter der Versuchsdurchführungen mittels direkten Membranemulgierens	58
Tabelle 7: Übersicht der Parameter der Versuchsdurchführungen mittels Premix- Membranemulgierens	59
Tabelle 8: Vergleich der Membranhalter der Emulgierzonen A und B	62
Tabelle 9: Kennwerte der durch die Förderpumpe mechanisch dispergierten Emulsionen bei veränderter Förderleistung von $P_{FL} = 10 \dots 100\%$	63
Tabelle 10: Kennwerte der durch die Förderpumpe mechanisch dispergierten Emulsionen bei veränderter Dispergierzeit von $t = 2,5 \dots 40$ min	65
Tabelle 11: Kennwerte der O/W-Emulsionen; P. 2, p = 1 7 bar, $P_{FL} = 80\%$, $\varphi = 0,60\%$	68
Tabelle 12: Kennwerte der O/W-Emulsionen; P. 3, p = 1 7 bar, $P_{FL} = 80\%$; $\phi = 0,30\%$	69
Tabelle 13: Kennwerte der O/W-Emulsionen; P. 2, p = 3 bar, $P_{FL} = 20 \dots 100\%$, $\phi = 0,60\%$	71
Tabelle 14: Kennwerte der O/W-Emulsionen; P. 2, P. 3 und p. 4, p = 7 bar, $P_{FL} = 80\%$; $\phi_{P.2} = 0,60\%$; $\phi_{P.3} = 0,30\%$; $\phi_{P.4} = 0,15\%$	73
Tabelle 15: Vergleich zwischen dem 3,5-fachen des mittleren Porendurchmessers einer Membran und dem Sauterdurchmesser der Tropfengrößenverteilung einer erzeugten Emulsion	74
Tabelle 16: Kennwerte der O/W-Emulsionen; P. 3, p = 7 bar, $P_{FL} = 80\%$, 3 g Tween 20, 3 g Tween 65 und 0,7 g Tween 80, $\phi = 0,30\%$	76
Tabelle 17: Kennwerte der O/W-Emulsionen; P. 3, $p = 0, 2 1, 0 7, 0$ bar, $P_{FL} = 30\%$, $P_{FL} = 30\%$ Premix	80

Cabelle 18: Kennwerte der O/W-Emulsionen; P. 4, $p = 1 \dots 7$ bar, $P_{FL} = 40\%$, $P_{FL} = 40\%$ Premix	82
Cabelle 19: Kennwerte der O/W-Emulsionen; P. 4, $p = 1$ bar, $P_{FL} = 20 \dots 60\%$, $P_{FL} = 40\%$ Premix	87
Cabelle 20: Kennwerte der O/W-Emulsionen; P. 3, $p = 1 \dots 7$ bar, $P_{FL} = 60\%$, $P_{FL} = 50\%$ Premix	91
Cabelle 21: Kennwerte der O/W-Emulsionen; P. 4, $p = 1 \dots 7$ bar, $P_{FL} = 60\%$, $P_{FL} = 50\%$ Premix	92
A 1: Porenverteilungen der P. 2, P. 3 und P. 4 Membran	101
A 2: Wertetabelle der Kalibrierung der Förderpumpe	102
A 3: Wertetabelle der Oberflächenspannungen aller Proben und dem jeweiligen Mittelwert	102
4: Vergleich der Tropfengrößenverteilungen der durch die Förderpumpe dispergierten Emulsionen bei veränderten Förderleistungen von $P_{FL} = 10 \dots 100\%$; $\phi = 1\%$	103
5: Vergleich der Tropfengrößenverteilungen der durch die Förderpumpe dispergierten Emulsionen bei veränderten Dispergierzeiten von t = 2,5 min 40 min; $\varphi = 1\%$	103

Notation und Abkürzungen

Notation:

Lateinische Kleinbuchstaben		Lateinische Großbuchstaben			
b	[m]	Breite	А	[m ²]	Fläche
c		Konzentration	F	[N]	Kraft
d	[m]	Durchmesser/Tropfengröße	Ι	$[Wm^{-2}]$	Intensität
f	[m]	Brennweite	J	$[ms^{-1}]$	Flux
h	[m]	Höhe	Κ		Porenstruktur-Beiwert
k		Anpassungsparameter	R_{m}	[Pasm ⁻³]	hydraulischer Widerstand
1	[m]	Länge	R^2		Bestimmtheitsmaß
р	[Pa]	Druck	U	[m]	Umfang
r	[m]	Radius	V	$[m^3]$	Volumen
t	[s]	Zeit	Ý	$[m^3s^{-1}]$	Volumenstrom
u	$[ms^{-1}]$	Geschwindigkeit	W	[J]	Energie/Arbeit

Griechische Kleinbuchstaben			Gried	chische C	Großbuchstaben	_
γ	[Nm ⁻¹]	Oberflächen-/Grenz-	Θ	[°]	Streuwinkel	
		flachenspannung				
3		Porosität				
η	$[kgm^{-1}s^{-1}]$	dynamische Viskosität				
θ	[°]	Randwinkel				
λ	[m]	Wellenlänge				
μ	$[m^2 s^{-1}]$	kinematische Viskosität				
ρ	[kgm ⁻³]	Dichte				
φ		Dispersphasenanteil				

Abkürzungen:

BSM	Beugungsspekrometrie
CMC	kritische Mizellenbildungskonzentration
HLB	hydrophilic-lyphophilic-balance
O/W	Öl in Wasser
P.	Porositätsklasse
PIV	Particle Image Velocimetry
W/O	Wasser in Öl