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PREFACFE

Structural Topology Optimization (STO) is a relatively new, but ra-
pidly expanding and extremely popular field of structural mechanics.
Various theoretical aspects, as well as a great variety of numerical
methods and applications are discussed extensively in international
journals and at conferences. The high level of interest in this field
1s due to the substantial savings that can be achieved by topology
optimization in industrial applications. Moreover, STO has interest-
ing theoretical implications in mathematics, mechanics, multi-physics
and computer science.

This is the third CISM Advanced Course on Structural Topology
Optimization. The two previous ones were organized by the first au-
thor of this Preface, the current one — by both authors.

The aim of the present course is to cover new developments in this
field since the previous CISM meeting on STO in 1997. The topics
reviewed by various lecturers of this course are summarized briefly
below.

In his first lecture, George I. N. Rozvany reviews the basic features
and limitations of Michell’s (1904) truss theory, and its extension to
a broader class of support conditions.

In the second lecture, George Rozvany and Erika Pinter give an
overview of generalizations of truss topology optimization, via the
Prager-Rozvany (1977) optimal layout theory, to multiple load con-
ditions, probabilistic design and optimization with pre-existing mem-
bers, also briefly reviewing optimal grillage theory and cognitive pro-
cesses in deriving exact optimal topologies.

George Rozvany’s third lecture discusses fundamental properties of
exact optimal structural topologies, including (non)uniqueness, sym-
metry, skew-symmetry, domain augmentation and reduction, and the
effect of non-zero support cost.

In a joint lecture with Tomasz Sokdl, the verification of various
numerical methods by exact analytical benchmarks is explained, and
conversely, the confirmation of exact analytical solutions by Sokot’s
numerical method is discussed. The latter can currently handle ground
structures with several billion potential members. In his final lecture,
George Rozvany gives a concise historical overview of structural topol-



ogy optimization, and critically reviews various numerical methods in
this field.

The lecture by Tomasz Lewinski and Tomasz Sokdt is focused on
one aspect of the lectures by George Rozvany, namely on the Michell
continua. This theory is constructed for volume minimization of
trusses which finally reduces to a locking material problem.

The Michell problem belongs to the class of optimization of stat-
tcally determinate structures whose behavior is governed only by the
equilibrium conditions and constraints bounding the stress level. More
complex problems arise if one optimizes the shape of elastic bodies,
even those being homogeneous and isotropic. In general, the layout
problems in linear elasticity are ill-posed, which is the central ques-
tion of the lecture by Francgois Jouve. This author discusses the above
problem and clears up the remedies: either to extend the design space
and to relax the problem, or to reduce the design space by introducing
new reqularity constraints. The relaxzation by homogenization method
is outlined in Sec. 2 of this lecture, along with numerical techniques.
The method is efficient due to fundamental results concerning opti-
mal bounds on the energy. Although this exact and explicit result is
restricted to the compliance minimization for a single load condition,
it has served as the basis for various researchers to develop other
homogenization-based methods, such as the one by Grégoire Allaire,
Eric Bonnetier, Gilles Francfort and Frangois Jouve in 1997. In his
lecture Frangois Jouve discusses also the methods of partial relaz-
ation of selected problems for which the exact relaxations are not at
our disposal, or they assume a non-explicit form. The last chapter of
the lecture concerns the level set method proposed in the early 2000’s,
which gives very promising results, even in an industrial context, with
complezx state equations, objective functions and constraints. This au-
thor shows how this method can be combined with shape derivatives
and by the topology derivatives of selected functionals.

The lecture by Grzegorz DzierZanowski and Tomasz Lewiriski de-
livers a complete derivation of the crucial result mentioned: the opti-
mal bounds on the energy. The derivation is based on the translation
method for the case of two isotropic constituents and then reduced to
the case if one constituent is a void.

Structural topology optimization comprises also the design of ma-
terial characteristics without linking them with the density of mass.



This optimization field is called the Free Material Design (FMD).
The classical FMD problem is aimed at finding the optimum values of
all components of the Hooke tensor from the criterion of compliance
minimization, under the isoperimetric condition of boundedness of
the integral of the trace of the Hooke tensor. The lecture by Stawomir
Czarnecki and Tomasz Lewiriski shows that the FMD problem can be
reduced to a locking material problem, even in the multi-load case.

The siz lectures by Niels Olhoff, Jianbin Du and Bin Niu concern,
the optimization of structures subjected to dynamic loads. These au-
thors explain how to design a structure such that the structural eigen-
frequencies of vibration are as far away as possible from a prescribed
external excitation frequency - or band of excitation frequencies - to
avoid resonance phenomena with high vibration and noise levels. This
objective may be achieved by

- mazximizing the fundamental eigenfrequency of the structure,

- maximizing the distance (gap) between two consecutive eigen-

frequencies,

- mazimizing the dynamic stiffness of the structure subject to

forced vibration,

- manimizing the sound power flow radiated from the structural

surface into an acoustic medium.

A special lecture by Niels Olhoff and Bin Niu discusses how max-
imization of the gap between two consecutive eigenfrequencies gen-
erates significant design periodicity, and the final (sizth) lecture pre-
sents the application of a novel topology based method of simultaneous
optimization of fiber angles, stacking sequence, and selection of ma-
terials, for vibrating laminate composite plates with minimum sound
radiation.

In the first three of his five lectures, Kurt Maute discusses ap-
plications of the density method to diffusive and convective transport
processes, as well as to multi-physics problems. The complexity of
selecting appropriate objectives and constraints are emphasized in the
chapter on diffusive transport optimization problems. The extension
of the porosity model to fluid problems is presented for flow topology
optimization problems, characterized by the Darcy-Stokes and Navier-
Stokes equations at steady state conditions. The fundamental differ-
ences in solving multi-physics problems that are either coupled via
constitutive laws or via surface interactions are discussed and illus-
trated with applications to piezo-electric coupling and fluid-structure



interaction problems. The fourth lecture introduces an alternative
to topology optimization approaches that employ density or FErsatz
material approaches to represent the material layout in the mechan-
ical model. The integration of the eXtended Finite Element Method
(XFEM) into a level-set topology optimization method is discussed
and illustrated with applications to flow topology optimization. The
last lecture by Kurt Maute is devoted to topology optimization methods
that account for uncertainty in material parameters, geometry, and
operating conditions. Here, the aim is to arrive at reliable and robust
designs. This lecture introduces basic techniques in reliability based
design optimization (RBDO) and robust design optimization (RDO),
and discusses their application to topology optimization.

G.I.N. Rozvany and T. Lewiriski
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Structural Topology Optimization (STO) — Exact
Analytical Solutions: Part I

George I. N. Rozvany'

! Department of Structural Mechanics, Budapest University of Technology and Economics,
Budapest, Hungary

1. Introduction: Some Previous Meetings, Review Lectures and
Review Articles on Structural Topology Optimization (STO)

As mentioned in the Preface, on the subject of STO the author has organized two
previous CISM Advanced Courses in Udine (Rozvany 1992 and 1997), and with
Niels Olhoff a NATO ARW in Budapest (Rozvany and Olhoft 2000).

In recent years the author gave principal, keynote or review lectures on STO at
important meetings, such as 6" European Solid Mechanics Conference (Budapest,
2006), World Congress of Computational Mechanics (Venice, 2008), US National
Congress on Computational Mechanics (Columbus, Ohio, 2009), Chinese Solid
Mechanics Congress (Dalian, 2009), Hungarian Academy of Science meeting (Bu-
dapest 2009), 8™ ASMO/ISSMO Conference (London, 2010), Computational
Structures Technology Conference (Valencia, Spain, 2010), Computational Methods
in Mechanics Conference (Warsaw, 2011), and Engineering Computational Tech-
nology Conference (Dubrovnik, 2012).

The author (and co-authors) have also written some much-cited review articles on
STO (Rozvany, Bendsoe and Kirsch 1995, Rozvany 2001 and 2009). A most com-
prehensive and authoritative book on STO is by Bendsoe and Sigmund (2003).

2. Preliminaries

Since the above lectures dealt mostly with numerical topology optimization, the first
three lectures of the author will discuss exact analytical solutions. These are ex-
tremely important as benchmarks, since numerical methods of topology optimization
have many sources of error.

A basic feature of the author’s lectures is that they employ very simple examples,
so that fundamental principles of mechanics are not obscured by computational or
mathematical complexities. Moreover, following the advice of the late Professor
William Prager (Brown University), various general features of optimal topologies
will be explained and proved at an ‘engineering level’, using principles of mechanics
in preference to higher mathematical concepts.

G. Rozvany, T. Lewinski (Eds.), Topology Optimization in Structural
and Continuum Mechanics, CISM International Centre for Mechanical Sciences,
DOI 10.1007/978-3-7091-1643-2_1, © CISM, Udine 2014
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3. Subfields of STO

As explained previously (see e.g. the review article, Rozvany, Bendsoe and Kirsch
1995), structural topology optimization can be divided into two subfields.

Layout optimization (LO) deals with grid-like (low volume fraction) structures
(trusses, grillages, shell-grids, and dense systems of intersecting shells, see Fig. 1),
optimizing simultaneously the topology (connectivity of the members), geometry
(location of the joints) and sizing (cross-sectional dimensions).

Aap,

(c)

(d)

Figure 1. Some examples of grid-like structures: (a) truss, (b) grillage, (c) shell-grid, (d)
intersecting shells (honeycomb).

Generalized shape optimization (GSO) finds the best topology of the internal
boundaries, and the shape of both internal and external boundaries of perforated or
composite continua.

3.1. Layout Optimization (LO)

In layout optimization (LO), we start off with a ‘ground structure’, which contains all
potential members (‘ground elements’). During the optimization procedure, we
remove non-optimal ground elements and determine the optimal sizes of the optimal
ones.
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In discretized LO, the number of ground elements is finite. In exact LO, we have
an infinite number of ground elements. A ground structure with an infinite number of
elements is sometimes called ‘structural universe’ (e.g. Rozvany and al. 1995).
Alternatively, a structural universe may be replaced by a ‘design domain’, at all
points of which members may run in any direction.

3.2. Generalized Shape Optimization (GSO)

The simplest form of structural topology optimization concerns so-called ISE to-
pologies (with Isotropic Solid or Empty elements, see e.g. Rozvany 2001).

In discretized GSO, the structural domain is divided into a finite number of
ground elements. For ISE topologies, the thickness or density of each ground element
may only take on a zero value (‘white element’) or a pre-assigned other value (‘black
element’). In a normalized formulation, the pre-assigned value is unity, and then we
have a 0-1 problem.

In exact GSO, the number of ground elements tends to infinity, and therefore they
shrink to points. In other words, exact GSO consists of assigning optimally either
‘material’ or ‘no material’ to each point of the design domain.

GSO can be generalized to multi-material optimization, in which case for each
ground element (or at each point of the design domain) we may chose one out of
several given materials or no material.

Structural topology optimization may consist of minimizing an objective function
(typically the total structural volume, weight or cost) subject to constraints on the
structural response (e.g. stresses, displacements, buckling load, natural frequency,
etc.). Additional constraints may put limits on the member sizes (side constraints),
ensure manufacturability, or prescribe discrete cross-sectional dimensions. Alterna-
tively, we may maximize or minimize some structural response or a weighted
combination of several responses for given volume, weight or cost.

4. Michell’s Truss Theory

The first paper on exact structural topology optimization was published more than a
century ago by the ingenious Australian inventor A. G. M. (‘George’) Michell
(1904). It dealt with the least-volume topology of trusses with a single load condition
and a stress constraint.

4.1. Some Bio-data about Michell

A. G. M. Michell (1870-1959) went to school in Cambridge, UK, and lived later in
Melbourne, Victoria, Australia. He was still alive, when the author moved from
France to that state of Australia. Michell had a number of ingenious inventions of
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great importance to the industry, such as thrust-bearing for ships, crankless engine,
lubrication systems, timber preservatives, hydraulic power transmissions, etc.
However, these were not followed by financial success for Michell. He liked solitude,
was not interested in team sports (never got married), and liked to walk hundreds of
miles in the Australian bush.

4.2. The Significance of Michell’s Paper on Trusses

Michell’s (1904) milestone contribution to truss topology optimization was un-
doubtedly both revolutionary and ingenious. He introduced essential elements of
what we now call layout optimization, continuum-type optimality criteria, adjoint
strain field and ground structure (structural universe). He achieved all this over a
century ago, when almost nothing was known about essential techniques of structural
optimization. For this reason, Michell had to rely on new and imaginative ideas in
deriving his optimality criteria.

5. Michell’s Optimality Criteria

In current notation, Michell’s problem can be stated as follows. Considering a
structural domain D with given external forces, minimize the volume V of a truss
subject to the stress constraint

—0.<0<0; (1

where o is the longitudinal stress in any truss member, o is the permissible stress
in compression and o is the permissible stress in tension. Assuming that all truss
members develop one of the permissible stresses (see end of Section 2.1 in Lecture
2), the total truss volume V can be expressed as

V== LF/o.+Y LF/o; @)
C T

where L; and F; are the length of and the force in the member 7, and the summation
over C and T refer to all the compression and tension members, respectively. A
Michell truss may have an infinite number of members.
Note: In Michell’s theory, neither upper nor lower limits are imposed on the
cross-sectional areas, which vary continuously.

In current notation Michell’s optimality criterion can be summarized as follows.

g=ksgnF (for F#0), [e|<k (for F=0) (3)

where ¢ is a (small) kinematically admissible strain and £ is a positive constant
The member forces F must be statically admissible.
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The term ‘kinematically admissible’ implies that the considered strain field (or
the corresponding displacement field) satisfies kinematic continuity (compatibility)
and boundary (support) conditions. ‘Statically admissible’ means that the considered
forces/stresses satisfy equilibrium and static boundary conditions.

Michell (1904) used the symbol ¢ for the limit on reference strain (instead of & in
the relation (3) above).

5.1. Limitations of Michell’s Optimality Criteria

After re-examining Michell’s proof, the author concluded (Rozvany 1996a) that
Michell’s original optimality criteria are valid, if one or both of the following two
sufficient conditions are satisfied:

(a) the structural domain is subject to prescribed external forces only, or
equivalently, to ‘statically determinate supports’ (supports in which the reac-
tions can be uniquely determined from equilibrium, i. e. they do not depend on
the choice of a stable topology, nor on the cross-sectional areas within a given
topology), or

(b) the permissible stresses in tension and compression are the same.

These limitations will be illustrated with examples in Section 8.

5.2. Researchers’ Response to Michell’s (1904) Paper

Michell’s pioneering effort was completely ignored for over half a century, after
which it was re-discovered by Cox in 1958 (Cox 1958, 1965), who applied Michell’s
criteria to a few new, but simple load conditions. Following this, Owen (1965) also
reviewed briefly Michell’s work in his book. But a detailed investigation of this topic
is due to Hemp, who (with important contributions by his co-workers, ASL Chan,
HSY Chan and McConell) studied Michell structures most of his professional life.
Valuable results by him and his research associates were summarized in his book
(Hemp 1973).

6. Extension of Michell’s Theory to Statically Indeterminate
Support Conditions and Unequal Permissible Stresses

If neither of the conditions (a) or (b) under Section 5.1 are satisfied, then Michell’s
optimality criteria are not valid, and must be modified. Such more general optimality
criteria were stated by Hemp (1973), and also follow readily from the Prager-Shield
(1963) conditions, which was used for the optimal layout theory by Prager and
Rozvany (1977a), discussed in Lecture 2, Section 2.
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For different permissible stresses in tension and compression, and statically in-
determinate support conditions, one must use the following optimality criteria.

z=-1/c,(for F <0), g =1/0, (for F > 0),

_ )
-1/o.<e<1/o, (for F =0),

in which & represents a fictitious strain-field termed ‘adjoint’ strain field. We
sometimes use the shorter notation

Vo.=k., 1o, =k, 4)
For 0, =0, =0, wehave
kp=ko=k=1/c 6)

and then (4) reduces to (3).

Note: Relations (3) or (4) are necessary and sufficient conditions of optimality for the
relevant class of problems if a feasible solution exists, the adjoint strains £ are
kinematically admissible, and the member forces F statically admissible (i. e. satis-
fying equilibrium). This is because Michell’s original problem, and its extension in
(4) are convex problems.

Moreover, for equal permissible stresses in tension and compression Michell’s
problem is self-adjoint i. e. the ‘real’ elastic strains and the adjoint strains are linearly
proportional.

It is to be remarked that during his post-doctoral work with Hemp in Oxford
around 1970, the first author used the Prager-Shield (1967) conditions for all to-
pology problems, which of course clearly imply the extended optimality conditions in
4).

The structural volume is given by the sum of products of cross sectional areas A4;
and member length L;, divided by the appropriate permissible stress (primal formu-
lation), as in (2), or from the ‘dual formula’,

V=P'A (7)
where the vector P denotes the external forces and A the adjoint displacements
(given by the adjoint stain field £ ) at points of application of these forces.

7. Review of the Author’s Paper on the ‘Shortcomings’ of

Michell’s Theory (Rozvany 1996)

In the above paper, the author (Rozvany 1996)
(i) pointed out the limitations of Michell’s (1904) proof,
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(i1) stated the range of validity of Michell’s original criteria for unequal per-
missible stresses,

(iii) gave a simple example to show that the corrected optimality criteria in (4)
result in a lower volume than the original criteria by Michell (1904), see Figs 2b
and 3b later, and

(iv) pointed out the examples in Michell’s paper, which in his opinion have a
non-optimal topology (see Section 10 herein).

In his paper (Rozvany 1996), the author presented three proofs of the extended
optimality criteria in (4). These proofs were based on

(a) the Prager-Shield (1967) condition (see Lecture 2, Section 2.2),
(b) the Karush-Kuhn-Tucker (KKT) condition,
(c) the principle of virtual work.

In his book, Hemp (1973) stated the more general optimality conditions (see (4)
above), but did not present any examples for which these give an optimal topology
that is different from those given by Michell’s more restricted criteria. He did not
point out either, which ones of Michell’s examples represent a non-optimal solution
for unequal permissible stresses, nor the part of Michell’s proof that renders his
criteria of more restricted validity. Possibly, Hemp carefully avoided all statements,
which could tarnish Michell’s well-deserved historical image. His gentlemanly
attitude was also obvious when he reviewed the author’s 1996 paper, and suggested
tactful formulations (e.g. ‘shortcomings’ instead of ‘errors’).

8. Examples Illustrating the Limited Range of Validity of
Michell’s Optimality Criteria.

8.1. Statically Determinate Support Conditions, Equal Permissible Stresses

In Fig. 2a, we show an example, in which the support conditions (a pin and a roller)
are statically determinate, i. e. equilibrium uniquely determines the reactions in them,
irrespective of any (statically admissible) topology of the truss. This means that for
the load P we always have the reactions |Q| = |P| and |R| =2 |P| .

From the viewpoint of truss topology optimization, this is completely equivalent
to having the given external loads @, R and P, as in Michell’s original formulation.
Taking first the special case o, =0, =o, implying k, = k. =k, in Fig. 2a we
have £, =—&, =k, and then the quarter circular fan with equal adjoint strains in
both radial and circumferential directions clearly satisfies kinematic admissibility
with

u=v=0 at point B, # =0 at point A )
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(b)

x
u=0, \7:2kx:2x/0'p

g,=-l1/lc,, z =1/c, ¥
g =k, & =—k a=45°

Figure 2. Examples illustrating the limited range of validity of Michell’s optimality
criteria.

where u and v are the adjoint displacements in directions x and y.

Using the primal formulation in (2), it is known (e.g. Rozvany et al 1997) that for
any circular fan (see Fig. 3a), the sum of the product of forces and member lengths for
both (i) the circular chord and (ii) the radial members is the same, and equals

ZEg:he )

where F is the constant force in the circular chord, r is the radius of the fan and 6 is the
central angle of the fan. In our case F'= P, r=a and 6 = 7/ 2, so the expression in (9)
reduces to zPL /2. Then by (2) we get a truss volume of

V =knPa=rPalo, (10)

Using the dual formulation in (7), it can be shown (e.g. Rozvany et al 1997) that the
relative circumferential displacement at the end of the circular bar of a fan is (Fig. 3a)

A=rb(z, -5, (11)
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Substituting &, =k, ¢, =—k, r=a and 8=7/2 into (11), we find that PA
gives the same truss volume as the primal formulation.

Note: In the author’s lectures, thick continuous lines denote tension members, and
thick broken lines compression members.

8.2. Statically Determinate Support Conditions, Unequal Permissible Stresses

Considering again the problem in Fig. 2a, assign the values o, =0, /3 to the
permissible stresses. With the adjoint strains given by (4), we have

g, =1lo,, &, =1/0.=3/0; (12)

The above adjoint strains are kinematically admissible (see Fig. 2a). Then from
primal formulation by (2) with (9)

V=nPa(l/o, +1/0.)/2=rPa(1+3) 20, =27Pa/ o, (13)
Using dual formulation, we have by (4), and Figs 2a and 3a
&, =1/o,, &, =-3/0;, r=a and O=7x/2 (14)

and then (7) and (11) confirm the volume value in (13).

Note: For the statically determinate support conditions of this example, Michell’s
optimality criteria in (3) would also give the correct truss topology. However, for
calculating the volume from the dual formula in (7), one would have to take k=1 in
(3), and then multiply the result by (1/ o, +1/0.)/2 . Similar formulae are used in
the examples of Michell (1904). However, this ‘dual’ method is rather cumbersome,
and is only valid if the sum of products of bar forces and bar lengths is equal for
compression and tension bars:

— D LF, =Y LF, (15)
C T

which was actually pointed out to the author by Mariano Vazquez Espi. Clearly, a
great advantage of the extended optimal criteria in (4) is, that the corresponding dual
formula in (7) is valid even if the restriction (15) is not satisfied.

8.3. Statically Indeterminate Support Conditions, Equal Permissible Stresses

Considering the problem in Fig. 2b, the external load P can be transmitted by a truss
to any arbitrary points of the rigid line support EF. This support condition is statically
indeterminate, because the location, direction and magnitude of the reaction forces
depend on the layout of the truss. A similar problem was considered by Prager and
Rozvany (1977a, Fig. 1 in that paper).
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The adjoint displacement field in Fig. 1b gives principal adjoint strains of
& =-&=k (16)
at +45° to the axis x. This strain field is kinematically admissible, because it satisfies

T=v=0 (17)

along the rigid line support EF. It also satisfies the inequality in (3), because strains in
non-principal directions cannot have greater absolute value than the principal strains
in (16).

For the result in Fig. 2b, the primal volume-formula in (2) with o, =0 =0,
gives

V=232d (P/2)lo,=2Pd/o, (18)

For the dual formula in (7) the adjoint displacement at the point G in Fig. 2b is (by the
framed relations in Fig. 2b)

A =7 =2d/a,, (19)

and then (7) confirms the result in (18).

8.4. Statically Indeterminate Support Conditions, Unequal Permissible Stresses

We consider the problem in Fig. 2b, but with unequal permissible stresses in tension
and compression o, =0, /3.

For that problem, Michell’s original optimality criteria would give the layout in
Fig. 2b, but with the above permissible stresses the volume would then become

V=v2d(l/6,+3/6,)P/\2=4d P/o, (20)

On the other hand, the solution based on the extended optimality criteria in (4),
shown in Fig. 3b, gives the following volume by primal formulation

V =2d(\3PR)/ o, + dIN3)PR)3/o,) =243/0, ~3.4641d Plo,  (21)

which is about 13.4 per cent smaller than the volume of the solution based on
Michell’s criteria. The dual formula in (7), with |K| =V; = 24/3d/ o, confirms the
result in (21).

This shows the significance of using the modified criteria for statically indeter-
minate support conditions and unequal permissible stresses. The above (counter)
example was originally presented by Rozvany (1996).
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oc.=0;/3
=-2x/o,, 17=2\/§x/0'T

u
& =10,, 8 =-3/0,

30°

L,=2d/\3, F,=-Pn2

(a) d ‘ (b)

Figure 3. (a) Adjoint displacement for a circular fan, (b) The correct solution of the
problem in Fig. 2b for unequal permissible stresses

9. The Optimal Orientation of Truss Members at a Point of a
Line Support

Considering a point A of a line support (Fig. 4a), by (4) the adjoint strains along two
truss members are £, =1/0, and &, =—1/0, which are also principal strains due

to the inequality in (4).
In a Mohr-circle representing the adjoint strains at point A, we have (Fig. 4b)
r=1/o,+1/0.)2, a=1/o.-1/0,)2 (22)

cos(2x)=alr 23)

Then elementary transformations imply

1 O, — 0
K = —arccos———< (24)
o, +0.
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Foro, =o. =0, (24) gives k =45°, and for o, =0, /3 we get k =30°, pro-
viding an independent confirmation of the results in Figs 2b and 3b.

The optimal orientation of members along line supports was derived previously
(Rozvany 1996) from Hemp’s (1973) equations, but the above derivation is much
simpler and easier to understand for non-specialists.

10. Critical Re-examination of the First Example by Michell

For a point load and ‘forces equivalent to a force...and a couple. ..over a small circle’
Michell (1904) presents the solution in Fig. 4c (here redrawn, after Rozvany 1996).
For the optimal volume Michell gives (in our notation)

11
V=Famnd(—+—) 5)
h Or O¢

In our Fig. 4c, we show a circular support, but Michell refers to distributed forces
along a circle.

It is unfortunate that Michell is not with us to clarify his results, but this author has
the following difficulties in accepting the solution in Fig. 4c and (25).

(a) The relation (25) clearly implies that the above solution is meant to be also
for different permissible stresses in tension and compression. For that case,
Michell’s optimality criteria in (3) are restricted to given external forces (or
equivalently, statically determinate support conditions). For the problem in Fig.
4c, the optimal distribution of the forces along the circle with the radius 7
depends on the ratio a/ 7, so these forces are not given. This means that we are
choosing the forces along the circle optimally, which is equivalent to optimizing
for a circular line support. In that case however, we have to use the extended
optimality criteria in (4).

(b) The solution in Fig. 4c¢ fails to satisfy the condition (24) for optimal member
directions along line supports, so it cannot be optimal

(c) The problem in Figs 2b and 3b is the special (limiting) case of the problem in
Fig. 4c, with 1, — o . For this special case it was shown that the extended op-
timality criteria in (4) give a lower volume than Michell’s original criteria.

(d) For the problem in Fig. 4c, Dewhurst and Srithongchai (2005) obtained a
lower volume than Michell’s solution, when they used the optimal member
angles of 30° and 60° given by the extended optimality criteria.
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Figure 4. (a and b) Optimal directions of truss members at line supports, (c) Michell’s first
example

Note: Michell’s solution is completely correct for equal permissible stresses
or =0c=0,. In his first example (Fig. 4c herein), he starts off with having a
concentrated couple and force at point B in Fig. 4c, which is equivalent to 7, — 0.
For that case, (25) gives an infinite volume. A minimization problem giving an
infinite objective function value does not make much sense, because this would imply
that any other feasible solution is equally optimal.

Michell’s second, third and fourth examples are correct, because they are for
given external forces (equivalent to statically determinate support conditions). His
fifth example has the same problem as the one discussed above for the first example.
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11. Concluding Remarks

(1) Exact analytical benchmarks are extremely important in structural topology
optimization for checking on the validity, efficiency and convergence of nu-
merical methods, which have many sources of error.

(i1) Michell’s (1904) landmark paper is of pivotal importance to this field.
However, it is beneficial to any theory to determine its range of validity, and to
derive its extension to a much broader class of problems. This has been at-
tempted in this lecture. Further generalizations of Michell’s theory will be
presented in the next lecture.

References are listed after the last lecture of the author.
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1. Introduction

In this lecture we review the origin and basic features of the optimal layout theory
(Prager and Rozvany 1977a), including optimal regions and difficulties with
so-called O-regions. Then we discuss various extensions of this theory, including
multiple load conditions and multiple design constraints, probabilistic design and
pre-existing members.

2. Optimal Layout Theory (Prager and Rozvany 1977a)

2.1. Preliminaries

It has been shown (e.g. Drucker, Greenberg and Prager 1951), that for elastic-ideal
plastic structures a lower bound on the collapse load is given by any statically ad-
missible stress field, which nowhere violates the yield condition. ’Statically
admissible’ means that a stress field satisfies static boundary conditions and equi-
librium. A design based on the above *lower bound theorem’ is termed ’plastic lower
bound design’. It need not take kinematic (compatibility) conditions into considera-
tion.

In the problem in Fig. 5, we have a beam with equal positive and negative yield
moments, which are constant over the entire beam length. The moment diagram
shown in thick line is statically admissible, but kinematically inadmissible for a
linearly elastic beam, violating kinematic boundary conditions. Yet in ‘plastic lower
bound design’ it can be used, because the bending moments nowhere exceed the yield
moments.

Sved (1954) has shown that optimal (least-weight) elastic trusses under a stress
constraint and a single load condition are always ’statically determinate’ (or a convex
combination of statically determinate solutions). This term means that (i) there are no
’redundant’ members in the structure (a ‘redundant member’ can be removed without
making the structure unstable), (ii) its internal forces can be computed on the basis of

G. Rozvany, T. Lewinski (Eds.), Topology Optimization in Structural
and Continuum Mechanics, CISM International Centre for Mechanical Sciences,
DOI 10.1007/978-3-7091-1643-2_2, © CISM, Udine 2014
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static equations only, ignoring kinematic (compatibility) requirements, and therefore
(iii) the internal forces do not depend on member sizes.

L/2 '

Figure 5. Example of using the lower bound theorem of plastic design.

Barta (1957) extended Sved’s theorem on statical determinacy to trusses with
local buckling and McKeown (1974, 1997) to any combination of stress and dis-
placement constraints under a single load. (Pedersen (1969, 1970) obtained more
rigorous proofs of Barta’s (1957) theorem, and extended the statical determinacy
property to trusses with variable support conditions (Pedersen 1992, 1993). The
equivalent of Sved’s theorem was also proved rigorously by Achtziger (1997), in a
comprehensive review on optimization of discrete structures.

We may add that according to Wasiutynski and Brandt (1963), the first proof of
statical determinacy of single-load trusses, expressed as the ’theorem on the
non-existence of statically indeterminate lattices of uniform strength’ (meaning fully
stressed trusses), is due to Lévy (1873).

Since the optimal solution for certain classes of redundant structures (e.g. trusses,
grillages, rigid frames) with one load condition is statically determinate, we can
enlarge our feasible set for optimal elastic design (with static and kinematic admis-
sibility) to include all statically admissible solutions (also those violating kinematic
admissibility).This is because by the above theorems the final solution will be stati-
cally determinate, and that automatically satisfies elastic compatibility. In other
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words, the optimal solution for the enlarged feasible set will always be contained in
the original, smaller feasible set. This means that optimal elastic design of certain
structures with one load condition reduces to the optimal plastic design of these
structures. Moreover, a stress-based design of a statically determinate truss can only
be optimal, if all members develop the permissible stress.

2.2. Basic Features of the Optimal Layout Theory

This theory was already introduced in effect in the author’s first book (Rozvany
1976) for flexural systems (e.g. grillages, shells), and formulated in a more concise
form later (Prager and Rozvany 1977a). It is based on the Prager-Shield (1967)
optimality condition for plastic design. However, the new element in the layout
theory is, that it also gives optimality conditions for ’vanishing’ members (of zero
cross-sectional area) in terms of ’adjoint’ strains along these members. In other
words, optimal layout theory starts off with a ground structure or structural universe
of all potential members, and selects the optimal members (of non-zero
cross-sectional area) out of those.
Using either one of the above theories, we need to find

(1) a kinematically admissible ’adjoint’ displacement/strain field (satisfying
kinematic continuity and boundary conditions),

(i) a statically admissible stress field (satisfying equilibrium and statical
boundary conditions),

(iii) such that certain (‘static-kinematic’) optimality criteria are also fulfilled.

In these optimality criteria, the adjoint strains are given by the subgradient of the
’specific cost function’ with respect to stresses or stress resultants (e.g. member
forces F' or beam moments M).

The subgradient of a function is the usual gradient, but at discontinuities of the
gradient any convex combination of the adjacent gradients can be taken.
For sign-independent, stress-based design of trusses and grillages of given depth, for
example, the ’specific cost functions’ (representing in this text cross sectional areas
A) are

A=k|F| and 4=k|M]| (26)

where £ is a constant, F' is a member force, and M is a bending moment.
Then, e.g. for trusses, the optimality conditions reduce to those of Michell (1904)

E=ksgnF (for F#0), [g]<k (for F=0) (27)

where ¢ is the adjoint strain.
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(a) (b) (©)

Figure 6. Examples of specific cost functions and the corresponding adjoint strains.

For grillages, we have
K=ksgnM (for M #0), |c|<k (for M =0) (28)

where k¥ =—u"' is the adjoint beam curvature, and « is the adjoint beam deflection.

The specific cost function and adjoint strain values for Michell trusses are shown
in Fig. 6a. These relations are extended to trusses with a prescribed minimum cross
section, and, respectively, equal and unequal permissible stresses in tension and
compression, in Figs. 6b and c.

2.3. A Simple Illustrative Example Using the Prager-Shield Condition

Consider a clamped beam of constant depth and variable width with a central point
load (Fig. 7a). Then by (28) the adjoint curvatures (i.e. second derivatives of the
adjoint beam deflections) for positive and negative moments, respectively, are
K=k and x =—k.

For any system of downward forces on the beam, the sign of the moment diagram
(M) may only change at two places. The simplest of such loads, a single point load is
considered in Fig. 7. For two negative and one positive segments of the moment
diagram one gets the adjoint curvatures in Fig. 7b. For our simple load, this gives the
moment diagram in Fig. 7c, but the zero moment points would be the same for most
downward loads.
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(a)
O
< 2 > ©)
-PL/8
M

PL/8

Figure 7. Example of applying the Prager-Shield optimality condition (problem of Hey-
man, 1959).

The general feature of earlier applications of the Prager-Shield condition was that
no members or components disappeared from the structure. This condition was often
applied to plates or shells with several stress components (see the author’s first book,
Rozvany 1976). In layout optimization, however, most of the original members
vanish from the ground structure, but optimality criteria (usually inequalities) must be
satisfied along vanishing members also.

2.4. Optimal ’Regions’ of the Adjoint Strain Field for Michell Structures

It follows from (27) that in Michell trusses, the members are in the direction of the
adjoint principal strains of a constant magnitude (k), and the adjoint strains may
nowhere exceed this value. The optimal topology usually consists of several ’re-
gions’. Denoting the principal adjoint strains by (g,,¢,) , at any point of a 2D truss,
for equal permissible stresses in tension and compression we may have a
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T-region with a tensile and a compression member at right angles, & =—-¢&, =k,
S-region with members having forces of the same sign in any direction,
§=5, |g|=k (i=12),

R-regions with only one member at any point, |§1 | =k, |§2| <k,or

O-region with no members |§1|£ k, |§2| <k, with k=1/0,, where o, is the
permissible stress in both tension and compression.

The symbols used for optimal regions are shown in Fig. 8a.
For unequal permissible stresses in tension and compression, we have

for T-regions &, =k;, & =—k.,
for R-regions & =k, , or & =~k , and k, >&, > k. with 1/o. =k,
/oy =k;.

Depending on the sign of the forces, S and R regions may be further subdivided
into S*,S7,R* orR" regions.
Note: Most of the Michell literature deals with T-regions, because of the link with
slip-lines in plasticity (Hencky-Prandtl nets), which was developed earlier.

Some new types of regions for Michell structures will be introduced in Section 5.

Optimal regions were also derived for 2D perforated and composite continua by
Rozvany, Olhoff, Bendsoe, Ong and Szeto (1987), Ong, Rozvany and Szeto (1988)
and Szeto (1989), for a review see Rozvany, Bendsoe and Kirsch 1995 or a book by
Rozvany (1989). The optimal regions for 3D perforated continua were presented in
an outstanding paper by Olhoff, Renholt and Scheel (1998).

2.5. A Simple Example of Applying the Prager-Rozvany (1977a) Layout The-
ory to a Michell-Type Problem

In Fig. 8b we show some optimal topologies and in Fig. 8c the corresponding optimal

adjoint displacement fields. There are two line supports at right angles. We use a

normalized formulation with k= 1.

Elementary calculations show that for the adjoint displacements # and v inthe
upper region we have the principal adjoint strains

z=-5=1 (29)

at + 45° to the horizontal. This corresponds to a T-region, denoted by an arrow cross
in Fig. 8c. In the lower region we have
£ =0, g =-1 (30)

which signifies an R region denoted by a double arrow. Both satisfy the optimality
conditions in (27).
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Figure 8. (a) Symbols used for optimal regions. (b,c) Example of application of optimal
layout theory to Michell trusses.

It can be readily seen that along the line supports with x = 0 and y = 0 we have
u=v =0, satistying the kinematic boundary conditions. Moreover, along the
region boundary with y = -2x both adjoint displacement fields in Fig. 8c give
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#=0,v=-2x 31

satisfying kinematic continuity.

It can be seen from Fig. 8b that in the upper region we have two-bar trusses with
one tension and one compression bar, in the lower region we have single bar trusses
in compression. If the load is acting on the region boundary, we may have any convex
combination of a two bar truss and a single bar truss.

3. Optimal Topologies for Least/Weight Grillages

The theory of the optimal topology of grillages (beam systems) actually preceded the
development of the optimal layout theory (Prager and Rozvany 1977a). The grillage
theory (e.g. Rozvany 1972a and b) was developed by the author’s research group, but
it has some elements of Morley’s (1966) theory for optimal reinforcement in concrete
slabs. Reviews of the grillage theory may be found in several texts (e.g. Rozvany and
Hill 1976, Prager and Rozvany 1977b, and Rozvany, Bendsoe and Kirsch 1995).

Exact optimal grillage topologies should actually be used more often as bench-
marks, because they have the following advantages.

(1) The optimal grillage theory has advanced much further than the truss theory,
because exact optimal grillage topologies are available for almost all possible support
and load conditions, and these analytical solutions can even be generated by com-
puter (see e.g. Rozvany, Bendsoe and Kirsch 1995, Fig. 38). A complex optimal
grillage topology is shown on the cover of the author’s first book (Rozvany 1976),
see Fig. 9 herein.

(i1) Michell trusses ignore buckling, which plays a much more important role for
trusses than for grillages.

(iii) Grillages may have three types of boundary conditions (clamped and simply
supported boundaries, and free edges, whilst trusses may only have two (support or
no support).

(iv) A large number of extensions of the grillage theory exist (see Rozvany
1992b, pp 125-127)

(v) Whilst most Michell trusses are mechanisms, most optimal grillages are stable
structures.

Elementary calculations show that for the adjoint displacements # and Vv in the
upper region we have the principal adjoint strains

5 =-5=1 (29)

at + 45° to the horizontal. This corresponds to a T-region, denoted by an arrow cross
in Fig. 8c. In the lower region we have

£=0,z=-1 (30)
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Figure 9. Cover of the author’s first book, showing a complex optimal grillage topology.

In spite of these advantages, only Sigmund (Sigmund et. al 1983) has compared
numerical and analytical solutions for grillages (and got a very good agreement).

We are not going to review here the grillage theory in detail, because it was
discussed at considerable length at another CISM Advanced Course (see Rozvany
1992b, pp. 107-127).

The optimal layout theory was also used for least-weight shell-grids (starting with
Rozvany and Prager 1979) including self-weight, for a review see the author’s book
(Rozvany 1989, pp. 338-341).

4. Cognitive Processes in Deriving Exact Analytical Structural
Topologies

The optimal topology for a completely new problem cannot be derived by a deduc-
tive process (using logical reasoning). The rough arrangement of optimal regions has
to be first ‘dreamt up’ (Melchers 2005), i.e. assumed by ‘intelligent’ guessing, or
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invention, and then checked if such a solution satisfies all the optimality criteria.
During this second stage, the exact shape of the region boundaries is also assessed.
The first stage requires considerable insight, the second stage a lot of high level
mathematical work.

Figure 10. Optimal truss topology for a square support. (a) solution guessed by Rozvany
(1991), (b) exact solution by Lewinski (Lewinski and Rozvany 2008).

As an example, for a square support the author guessed the optimal topology
fairly accurately in a text by the author (Rozvany 1995, presented 1993 here Fig. 10a,
exact reproduction), and this was confirmed by Lewinski fifteen years later (Lewinski
and Rozvany 2008) by an extremely long derivation (Fig. 10b).
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More recently, however, it has been possible to compute highly accurate nu-
merical solutions e.g. for Michell trusses, using over a billion potential members in
the ground structure (Gilbert and Tyas 2003, Sokol 2011a and b, Pichugin, Tyas and
Gilbert 2012, see also Lecture 4 in this course). These numerical solutions give a very
good general idea about the adjoint displacement field for the exact optimal topology,
except for O-regions (regions without members), which are discussed in the next
section.

S. Difficulties in Deriving the Adjoint Displacement/Strain Field
for O-Regions — Recent Developments

O-Regions were used by the author in some contributions to papers by Lewinski,
Zhou and Rozvany (1994b), Rozvany, Gollub and Zhou (1997) and Sokol and
Rozvany (2012).

It is explained in the last of these papers that O-Regions may contain the usual
R-Regions and T-Regions, but also the following new types of regions Z-Regions, in
which both principal strains are zero (rigid region with & =&, =0), and V-regions
(with |&| <k, &, =0).

Examples of O-regions consisting of T, R, and Z-Regions are given in Fig. 11b, ¢
and d (after Sokol and Rozvany 2012). An example of an O-Region consisting of T
and V-Regions is given in Fig. 12. The above diagrams show only one quarter of the
domain, axes of symmetry are indicated in dash-dot lines. They are generalizations of
Michell’s solution shown in Fig. 11a.

The state of adjoint strains in these T and Z-Regions in Fig 12a, respectively, is
represented by the Mohr-circles in Figs 12b and c. It can be seen from Fig. 12b that
the strain along the boundary of the T- and V-regions is

&g =kcosCa) (32)
Moreover, one can infer from Fig. 12c¢ that for the V-region, we have
kcos(2a) =(&/2)(1+cos2a)) = & =&, =k(1- tan’) (33)

It can be seen that for ¢ =0 and a =45° (33) gives the correct &, values for the
limiting cases in Figs 11a and b. It is important to note that in O-regions the adjoint
strain/displacement fields may be non-unique.
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Figure 11. Some O-regions consisting of T, R and Z-regions.
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Figure 12. O-Region consisting of T and V-Regions.

A simple example of non-uniqueness of the adjoint strain field is shown in
Fig. 13. In this problem we have two vertical line supports at a distance of 3L from
each other, and a horizontal point load at a distance L from the right hand support. To
the permissible stresses the same value is assigned in tension and compression. The
optimal layout obviously consists of a single horizontal bar between the load and the
nearer support. The principal adjoint strain in the vertical direction is everywhere
zero: £, =0. In Fig. 13a we have an R-region on the right hand side and an
O-region on the left hand side, where the inequality in (27) admits a horizontal strain
of —k/2. An alternative, discontinuous adjoint strain field is given in Fig. 13D, in
which we have a Z-region and an R-region on the left, both admissible by (27).

Another new type of region within an O-region is a scaled T-region termed T’
region, having the property €, =—¢&, = Ak with 4 <1 for equal permissible stresses,
and &, = Ak,, &, = —Ak, for unequal permissible stresses. Fig. 14 shows an optimal
topology with a T region, for which we have

A=(4x/3+2\3)@87/3+23) (34)

The solution in Fig. 14 has been verified numerically to a high degree of accuracy by
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Sokol (see the paper by Rozvany and Sokol 2012).
Similarly, we have scaled R-regions termed R’-regions.

\Y : R a)
<+—> : <+—»
-4
c =—k/2 e =k
X
|« >ie q
| 2L | L |
T’x
Y zZ R R b)
L —
£ =0 i & =-k g =k
X : X X

Figure 13. A trivially simple example of non-uniqueness of adjoint strain/displacement
fields in O-Regions.

principal adjoint strains
in the O-region

region boundaries

‘concentrated’ members

‘distributed’ members

Figure 14. Optimal topology with three T’- regions (in the O-region)
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6. Extension of the Layout Theory to Elastic Design with Multi-
ple Load Conditions

The original optimal layout theory (Prager and Rozvany 1977a) has been extended to
many additional classes of problems, including combined stress and displacement
constraints (e.g. Rozvany, Birker and Gerdes 1994).

General optimality conditions for trusses with several load conditions and several
displacement constraints were derived by the author (Rozvany 1992a). A compliance
constraint puts a limit on the sum of the scalar product of external forces and the
corresponding displacements for any one of the load conditions (sometimes called
the ‘worst scenario’ constraint). This is a special case of displacement constraint, in
which a weighted combination of the displacements at the external loads is con-
strained, and the weighting factors are the external forces.

For a compliance constraint the author’s (Rozvany 1992a) optimality conditions
reduce to the following (Rozvany et al. 1993).

F, - v.F, [ 2
g, =—%_ & :—”A[: VF/E, i) s
ik EI-Al- ik EI-Al- ;( k* ik p)

(E./p)Y . vieq =1 (for 4,>0), (35)
k

(E./p)Y . vieq <1 (for 4, =0),
k

where ¢, and &, are kinematically admissible real (elastic) and adjoint strains in
the member i under the load k, v, Lagrange multipliers, F, = F,, the real and
adjoint member forces, whilst 4, = E; = p, denote the cross-sectional area, Young’s
modulus and density, respectively, for the member 7.

For the particular case of a vertical line support and of two alternative loading
cases, consisting of concentrated forces at =/, the above optimality criteria lead
(Rozvany et al. 1993) to an optimal topology of two bars shown in Fig. 15, with a
very neat closed form result for the bar angles (top of Fig. 15).

The optimal volume of the truss is given by (Rozvany et al. 1993)

L’P? (cos2 p N sin’ ﬂJ (36)

t = p
P CEcos’a|cos’a sin’«

where L is the horizontal distance of the load from the vertical support, P is the
magnitude of the loads, £ is Young’s modulus and C is the given compliance value.

In addition to global proof via layout theory, in this rather elaborate paper
(Rozvany, Zhou and Birker 1993), optimality of the solutions was also checked by
the co-authors numerically by
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(a) using a dense grid of potential truss members,

(b) optimizing a perforated plate by means of SIMP (Bendsoe 1989, Zhou and
Rozvany 1991, Rozvany, Zhou and Birker 1992)

(c) deriving for the given topology (two-bar truss) the optimal angle from the
Kuhn-Tucker condition.

iy 4 a,, :arctan\j(\/tan“ﬂ+8tar12ﬂ—tan2 ﬂ)/4

45
404

30

20+

Figure 15. Optimal topology for two alternative loads.

All solutions derived by three different authors have shown a complete agreement.
For this reason, “reliability” of the above analytical solutions is fairly high.

7. Extension of the Layout Theory to Probabilistic Design

The aim of reviewing the problem in the last section was to extend the same optimal
topology to probabilistic loads. This topic was considered by Rozvany and Maute
(2011).

The general form of the considered problem class is as follows.

minV = 4L, (37

subject to

Pr[C<K]>R (38)
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c=y (39)

where V' = truss volume, 4, = cross-sectional area of member i, L, = length of
member i, Pr = probability, C = total compliance, K = limiting value of total com-
pliance, R = limiting value of probability, F, = force in member i and E; = Young’s
modulus of member i.

The particular example considered is shown in Fig. 16a. The topology of a truss is
to be optimized within the design domain ABDG with supports along AB, subject to
anon-random vertical load of =300 and a random horizontal load H, with a mean of
zero and a normal distribution having a standard deviation of o =100. The truss
volume is to be minimized for the conditions in (38)-(39). It will be shown that the
solution for the considered problem is a symmetric two bar truss (as shown in Fig.
16.b). For simplicity, we assign a unit value to Young’s modulus.

A B
Typical
numerical
L solution
H \
D G Exact
Vv analytical
V | p solution
(a) (b)
H

Figure 16. Elementary benchmark example.

Since this problem is symmetric in the only random variable (H), condition (38) is
fulfilled if we consider the range of values for the random variable:

-H,<H<H, (40)
where the value H,, can be calculated from the inverse normal distribution cumula-

tive probability function (also called “quantile” or “probit”) function ® 'and R in
(38):

H, /G:(D’l(HTR) (41)
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In (41), (1+R)/2 is used, since the failure may occur at both ends of the interval of
(40). This implies

R=®(u+H,/0)-O(u-H,/0)=

(42)
O(u+Hy/o)y-1-d(u+H,/0))=20(u+H,/0)-1

from which with # =0 follows (41).
For example, if we require a probability of 0.9999 (failure probability of 10,
then we have @' ((1+0.9999)/2) = 3.89 and hence

H,=3.890=389 43)

in (41).

It can be shown (Rozvany and Maute 201 1) that for the considered problem, only
H ==xH, can be critical for (38) Therefore, once we know the value of H,, we can
calculate the optimal topology and the optimal volume from the relation in Fig, 16
and (36).

The above results were confirmed by Maute both analytically and by a first order
reliability approach (FORM) combined with a material distribution method (SIMP,
Bendsoe 1989, Zhou and Rozvany 1991, Rozvany, Zhou and Birker 1992).

8. Extension of the Layout Theory to Pre-Existing Members
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Figure 17. Optimal topology (a) without and (b and c) with pre-existing members.
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This problem was discussed in a paper by Rozvany, Querin, Logo and Pomezanski
(2006). If we have some already existing members of cross-sectional area B, and
want to add new members to satisfy some stress condition, then we have the fol-
lowing optimality criteria for equal permissible stresses (see Fig. 6b)

(for |[F|<B/k) =0,
(for |[F|>B/k) &=k sgnF, (44)
(for |[F|=B/k) 0<[|e|=k, sgnZ =sgnF

For unequal permissible stresses we have similar criteria based on Fig. 6¢c. Fig. 17a
shows the optimal topology without pre-existing members, Figs. 17b and c are for
pre-existing members along QR, with equal and unequal permissible stresses, re-
spectively.

These analytical solutions were obtained by the author, with independent nu-
merical confirmations by Querin, Logo and Pomezanski.

tension bars (a)
compression bars

Figure 18. (a) Michell’s (1904) first example, (b) its extension to two point loads (Rozvany
2011a, Sokol and Rozvany 2012).
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9. Historic Aspects of Some Recent Developments

It is rather remarkable that the first example of Michell (1904) shown in Fig 18 (top)
has not be extended from one point load to two point loads for over a century. This
extension was first stated recently (Rozvany 2011a), and discussed in greater detail,
also for other aspect ratios a year later (Sokol and Rozvany 2012).

It is even more surprising that Michell’s (1904) truss theory has not been ex-
tended until this year to several load conditions (stress constraints, elastic design).
This will be discussed in a forthcoming paper (Rozvany, Sokol and Pomezanski
2013).

10. Concluding Remarks

In this lecture, we have reviewed the optimal layout theory by Prager and Rozvany
(1977a), and some of its extensions to various design constraints. Difficulties in
obtaining solutions were also explained, and new types of optimal regions were
introduced for overcoming them. Some historic aspects of current truss topology
research were also noted.

References are listed after the last lecture of the author.
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Structural Topologies

George I. N. Rozvany1

! Department of Structural Mechanics, Budapest University of Technology and Economics,
Budapest, Hungary

1. Introduction

In Lecture 1 of this author we discussed Michell’s (1904) theory of optimal truss
design, examined its range of validity, and looked at extended optimality criteria for a
broader class of boundary conditions.

In Lecture 2 the optimal layout theory (Prager and Rozvany 1977) as well as
optimal regions in exact truss topologies were reviewed and several extensions of the
layout theory presented.

Whilst these two lectures touched on some basic features of optimal structural
topologies, fundamental properties of these will be examined in detail in this lecture.

2. Partial Relaxation of the Orthogonality Requirement for
Michell Trusses

Hemp (1973) states about Michell trusses: ‘If a pair of tension and compression
members meet at a point, they must be orthogonal ... no other member can be co-
planar with them’. In the following, we mention cases in which the above
orthogonality can be relaxed.

2.1. Non-Orthogonal Tension- and Compression-Members at Boundary Points
of T-regions

As a simple example, we consider Michell’s (1904) solution (see Fig. 18a in Lecture
2 or Fig. 26 in this lecture).

This solution consists of four T-regions, two of them have constant directions of
principal adjoint strains and the other two are ‘circular fans’. At the point A an
infinite number of members meet, but only the outside ones satisfy the above or-
thogonality rule.

G. Rozvany, T. Lewinski (Eds.), Topology Optimization in Structural
and Continuum Mechanics, CISM International Centre for Mechanical Sciences,
DOI 10.1007/978-3-7091-1643-2_3, © CISM, Udine 2014
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2.2. Non-Orthogonal Tension and Compression Members Along the Boundary
of an R" and an R” Region

As an example we quote the results of Rozvany and Gollub (1990), who solved the
Michell truss problem for any convex polygonal domain with line supports along the
boundaries. The optimal truss topology for these support conditions was even cal-
culated by a non-numeric computer program. One of these topologies is shown in
Fig. 19, in which double arrows indicate principle directions of R-regions. At the
point load, the compression and tension members are clearly not orthogonal.

1 3

30

D
/| 15° X
51.2060° A 38.7940°

Figure 19. Non-orthogonal compression and tension members for loads at the boundary
between an R* and an R region (after Rozvany and Gollub 1990).

Another example of non-orthogonality was derived by the author (Rozvany 1997)
Considering a vertical point load and two pin supports, the optimal truss topologies
for various horizontal distances of the point load are shown in Figs 20a, d, e and f.
The kinematic boundary conditions for the adjoint strain fields are shown in Fig. 20b
and the calculation of the principal adjoint strains &, and &£, by means of a
Mohr-circle in Fig. 20c. In Fig. 20 we use a normalized formulation with k= 1.

It can be seen that the optimal adjoint strain field in Figs 20a, b and c consist of an
R* and an R~ region. Well known solutions in Figs 20d and e are special cases of
the topology in Fig. 20a. The solution in Fig. 20f is a short ‘Michell cantilever’,
(Hemp 1973, Lewinski, Zhou and Rozvany 1994a).
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The topology in Fig. 20a has been extended to non-symmetric locations of the
point load in a paper to be submitted (Sokol and Rozvany 2013). All new
non-orthogonal optimal topologies have been confirmed numerically to a high degree
of accuracy by Sokol’s (2011a and b) truss optimization program.

(f)

Figure 20. (a, d, e and f) Optimal truss topologies for a vertical point load and two pin
supports. The adjoint strain field for the solution in sub-figure (a) is explained in
sub-figures (b) and (c).

3. Domain Augmentation and Reduction

The domain augmentation theorem states that for a domain with line supports along
the boundaries the optimal topology does not change if we modify the boundary such
that

(a) active supporting points along the old boundary are contained in the new
boundary, and
(b) no point of the new boundary is contained in the interior of the old domain.

A point of a line support is ‘active’ if members with non-zero cross sectional area
connect to it.



