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PREFACE

Many applications in mechanics, material science and technology re-
quire a comprehensive understanding and reliable representation of
the elastoplastic behavior observed in a large class of engineering ma-
terials. In the last few decades several phenomenological theories have
been developed on the macroscopic level. Extensions of these classic
models taking into account the formation of microstructures and the
microheterogeneity of multiphase materials have attracted a more pro-
nounced scientific interest rather recently. The role of microstructures
becomes more and more important with a decreasing size of the con-
sidered material specimen because then scale-effects play a dominant
role. Microstructure is indeed crucial, since plastic behavior typically
results from the interaction of complex substructures on several length
scales. The macroscopic behavior is then determined by appropriate
averages over the (evolving) microstructure.

The CISM course on “Plasticity and Beyond: Microstructures,
Crystal-Plasticity and Phase Transitions”, held in Udine from June
27 to July 1, 2011, was addressed to master students, doctoral stu-
dents, post docs and experienced researchers in engineering, applied
mathematics and material science who wished to broaden their knowl-
edge in classical and extended continuum thermodynamics, incremen-
tal variational formulations, phase-field modeling, higher-order mod-
els like gradient plasticity or numerical multiscale approaches at finite
deformations.

It is our pleasure to thank the lecturers of the CISM course Samuel
Forest (Paris, France), Jan Kratochvil (Prague, Czech Republic),
Mitsutoshi Kuroda (Yamagata, Japan), Valery Levitas (Ames, USA),
as well as the additional contributors to these CISM lecture notes
Kais Ammar (Paris, France), Benôıt Appolaire (Châtillon, France),
Daniel Balzani (Essen, Germany), Dominik Brands (Essen, Ger-
many), Nicolas Cordero (Paris, France), Anäıs Gaubert (Châtillon,
France), Ulrich Hoppe (Bochum, Germany), and Dennis Kochmann
(Pasadena, USA). We furthermore thank the 47 participants from
9 countries who made the course a success. Finally, we extend our
thanks to the Rectors, the Board, and the staff of CISM for the ex-
cellent support and kind help.

Jörg Schröder and Klaus Hackl
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A numerical two-scale homogenization

scheme: the FE
2
-method
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Abstract A wide class of micro-heterogeneous materials is designed
to satisfy the advanced challenges of modern materials occurring in
a variety of technical applications. The effective macroscopic prop-
erties of such materials are governed by the complex interaction of
the individual constituents of the associated microstructure. A suf-

ficient macroscopic phenomenological description of these materials
up to a certain order of accuracy can be very complicated or even
impossible. On the contrary, a whole resolution of the fine scale for
the macroscopic boundary value problem by means of a classical
discretization technique seems to be too elaborate.
Instead of developing a macroscopic phenomenological constitutive
law, it is possible to attach a representative volume element (RVE)
of the microstructure at each point of the macrostructure; this re-
sults in a two-scale modeling scheme. A discrete version of this
scheme performing finite element (FE) discretizations of the bound-
ary value problems on both scales, the macro- and the micro-scale,
is denoted as the FE2-method or as the multilevel finite element
method. The main advantage of this procedure is based on the fact
that we do not have to define a macroscopic phenomenological con-
stitutive law; this is replaced by suitable averages of stress measures
and deformation tensors over the microstructure.
Details concerning the definition of the macroscopic quantities in
terms of their microscopic counterparts, the definition/construction
of boundary conditions on the RVE as well as the consistent lin-
earization of the macroscopic constitutive equations are discussed
in this contribution.
Furthermore, remarks concerning stability problems on both scales
as well as their interactions are given and representative numerical
examples for elasto-plastic microstructures are discussed.

J. Schröder, K. Hackl (Eds.), Plasticity and Beyond, CISM International Centre for  
Mechanical Sciences, DOI 10.1007/978-3-7091-1625-8_1, © CISM, Udine 2014 



2 J. Schröder

1 Introduction

For the analysis of micro-heterogeneous materials, we define two different
scales, the macroscopic scale (coarse scale) and the microscopic scale (fine
scale). The fine scale is assumed to be the scale of the heterogeneities of
characteristic length l, whereas the characteristic length of the coarse scale
is denoted by L. If we assume that the domain size at the fine scale is
sufficient for homogenization requirements, then the separation of scales
expressed by

l � L (1)

has to hold. A homogenized – that means effective macroscopic – description
of the micro-heterogeneous material requires the definition of a representa-
tive volume element (RVE) or a statistically homogeneous volume element,
which is here assumed to be possible. In classical works, effective quantities
of micro-heterogeneous media, such as stiffness or compliance tensors, have
been discussed by Voigt (1910) and Reuss (1929). The arithmetical mean
value of Voigt and the harmonic mean value of Reuss were shown later to
be upper and lower bounds of effective parameters, see Hill (1965b, 1964a,b,
1963). However, the gap between these approximations can be quite wide,
see e.g. Babuska (1976). General procedures for the derivation of inequali-
ties between various moduli of mixtures have been discussed by Hill (1963)
and Kröner (1971). A variety of methods for the computation of overall
properties of micro-heterogeneous materials are documented in the mono-
graph Nemat-Nasser and Hori (1999).
A fundamental assumption for the scale-transition is the macro-homogeneity
condition, also denoted as Hill condition or Hill-Mandel condition, which as-
serts the equality of the virtual work between both scales, see Hill (1965a,
1963), Mandel and Dantu (1963), Mandel (1972). There are several “addi-
tive” mechanical quantities which could be averaged over the representative
volume element when transferred to the macro-scale, e.g. the mass, inter-
nal energy, entropy and dissipation. Furthermore, macroscopic measures of
plastic work for micro-heterogeneous materials have been analyzed in Hill
(1971).

A suitable framework for the solution of two-scale problems is the mathe-
matical homogenization theory. There, it is usually assumed that the mi-
crostructure is locally built by the spatial repetition of a suitable, very small
part of the whole microstructure, a unit cell. Thus, it is assumed that the
morphology and the distribution of the material properties are periodic func-
tions of the microscopic spatial parametrization y. As an introductionary
example we consider a simple one-dimensional bar. For this purpose, let
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the periodic function EA(y) denote the axial stiffness of a bar, u(x, y) the
axial displacement, x the parametrization of the coarse scale, and n(x) the
distributed axial load, then the axial displacements of the bar are described
by the differential equation

d

dx
N(x, y) + n(x) = 0 with N(x, y) := EA(y)

du(x, y)

dx
. (2)

The mathematical homogenization theory is based on the double scale asymp-
totic expansion of the yet unknown y-periodic field variable u(x, y), i.e.,

u(x, y) = u(0)(x, y) + ε u(1)(x, y) + ε2 u(2)(x, y) + · · · , (3)

where ε, defined as the microscopic to macroscopic dimension ratio (l/L), is
a very small number. The asymptotic expansion (3) has to be substituted
into the underlying partial differential equation with oscillating coefficients.
Applying the chain rule, i.e.,

d

dx
N(x, y) =

∂N(x, y)

∂x
+ ε−1 ∂N(x, y)

∂y
, (4)

yields a set of equations with factors in powers of ε. Equating the terms
of the different orders of ε with zero yields the set of differential equations,
which have to be solved. Fundamentals of this framework can be found in
Bensoussan et al. (1978), Sanchez-Palencia and Zaoui (1986) and Bakhvalov
and Panasenko (1984). Based on this approach, a computational homog-
enization framework in the field of linear elasticity as well as the applica-
tion of adaptive finite element methods has been proposed in Guedes and
Kikuchi (1990). Extensions of this method to locally non-periodic micro-
heterogeneous media are given by Fish and Wagiman (1993). A framework
of a two-scale homogenization technique using a Voronoi cell finite element
formulation has been proposed by Ghosh et al. (1995). Generalized con-
vergence arguments for the interpretation of the homogenized variational
equations have been used by Terada and Kikuchi (2001). An extension of
the latter simultaneous two-scale method to geometrical nonlinear formu-
lations of the associated two-scale boundary value problems in a material
and a spatial setting has been developed in Terada et al. (2003). Sev-
eral mathematical aspects of homogenization theory are discussed in Tartar
(2000). For the treatment of finite thermoelasticity in this scheme, we refer
to Temizer (2012).

A homogenization technique without recourse to the two-scale asymp-
totic expansion is governed by the above mentioned Hill-Mandel condition.
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Here, the boundary value problems on the macro- and on the micro-scale
are prescribed by the balance of linear and angular momentum and suitable
boundary conditions on both scales, where the micro-scale is approximated
by means of a representative volume element. A summary of recent de-
velopments in this field of applied computational mechanics of the overall
description of micro-heterogeneous materials up to the mid 1980’s is given
in Suquet (1987). In this context we also refer to Michel et al. (1999) where
the boundary value problem on the micro-scale is solved using the Finite-
Element-Method (FEM) and, alternatively, using a Fast Fourier Transfor-
mation. The authors also discuss the constraints on discrete unknown dis-
placements arising when periodic boundary conditions are used.
A multilevel finite element method (FE2-method) for nonlinear heteroge-
neous systems has been discussed by Smit et al. (1998), where the authors
implemented their algorithms in an Updated Lagrange environment. An-
other FE2-method for the analysis of the elasto-viscoplastic behavior of
fiber-reinforced composite materials was presented by Feyel and Chaboche
(2000), where the tangent matrix has been approximated by a perturbation
method. A framework for geometrically and/or physically linear/nonlinear
homogenization techniques in the sense of the FE2-method has been de-
veloped by Miehe et al. (1999a,b), including a closed-form representation
of the macroscopic (homogenized) tangent moduli. In order to design
“deformation-driven” microstructures, Miehe and Koch (2002) proposed a
Lagrangian multiplier method for the computational treatment of the con-
straints arising from the different boundary conditions: i) linear displace-
ments, ii) constant tractions, and iii) periodic displacements in combination
with antiperiodic tractions; for the discussion of the distinct boundary con-
ditions, see also van der Sluis et al. (2000), Terada et al. (2000), Kouznetsova
et al. (2001), Miehe and Bayreuther (2007) and Perić et al. (2011). A fam-
ily of algorithms and matrix representations of overall stresses and tangent
moduli of discretized micro-heterogeneous materials at finite strains is de-
scriped in Miehe (2003). Different methods for the computation of the
macroscopic tangent, e.g. the penalty method, have been investigated in
Temizer and Wriggers (2008).

The nature of finite deformation continuummechanics is the non-unique-
ness of solutions at specific thermodynamic states. As an example, this can
be associated to stability problems like buckling of columns under compres-
sive loadings. Although in micro-heterogeneous materials, like aligned fiber-
reinforced composites, cellular solids or in general arbitrary arrangements
of inhomogeneities, buckling phenomena may occur on the micro-scale. A
challenging issue in homogenization schemes at finite strains is the ana-
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lysis of instabilities at the macro- and micro-scale and their interactions.
In general, we distinguish between structural instabilities and material in-
stabilities: structural instabilities are associated to the non-uniqueness of
the underlying boundary value problem, whereas material instabilities are
understood as the violation of the Legendre-Hadamard-condition (loss of
rank-one convexity) of the free-energy. Nevertheless, there exits a relation
between material instabilities on the macro-scale and specific structural in-
stabilities on the micro-scale. Abeyaratne and Triantafyllidis (1984) studied
the macroscopic material instability occuring in nonlinear elastic composites
with periodically arranged voids. It was shown that a homogenized material
instability occurs although the matrix material was polyconvex in the sense
of Ball (1977b). Bifurcation modes of fiber-reinforced composites as well as
possible macroscopic material instabilities have been analyzed in Triantafyl-
lidis and Maker (1985). Structural instability problems on the micro-scale
are associated to the homogenization of a nonconvex boundary value prob-
lem on the micro-scale, see Müller (1987). The main challenge here is the a
priori unknown size of the RVE . A systematic investigation of the problems
pointed out in Abeyaratne and Triantafyllidis (1984) and Triantafyllidis and
Maker (1985) is given in Geymonat et al. (1993). Applying a Bloch-wave
ansatz to a fiber-reinforced composite, the authors showed that the on-
set of a bifurcation on the micro-scale corresponding to the long-wavelength
limit (infinite wavelength) leads to a macroscopic material instability. A de-
tailed computational homogenization analysis of structural instabilities on
the micro-scale and possible material instabilities on the macro-scale as well
as their interactions is performed in Miehe et al. (2002), in this context see
also Agoras et al. (2009) and Aubert et al. (2008). A microscopic bifurcation
condition of cellular solids, like elastic cellular honeycombs, have been pre-
sented in Ohno et al. (2002). A procedure, based on a block-diagonalization
method for periodic microstructures, for the estimation of the number of
unit cells necessary for the definition of a RVE of cellular solids in micro-
scopic bifurcation problems has been proposed in Saiki et al. (2002). In the
context of homogenization of non-convex integral functionals and especially
for the relation between linearization and homogenization in finite elasticity,
we refer to Müller and Neukamm (2011). For the treatment of localized fail-
ure with softening in this multi-scale approach see Hautefeuille et al. (2012).

If the classical assumption of scale separation does not hold or if it is
necessary to capture size dependency, then in general higher-order homoge-
nization techniques can be applied. A second-order homogenization scheme,
implying a second gradient continuum on the macro-scale and a remaining
classical continuum on the micro-scale, has been proposed by Geers et al.
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(2001, 2003) and Kouznetsova et al. (2004). A multilevel finite element
method coupling a classical continuum, a Cauchy continuum, on the fine
scale with a Cosserat continuum at the coarse scale has been proposed
by Feyel (2003). A critical analysis of the two-scale homogenization of
macroscopic second gradient and micromorphic models based on a Cauchy
continuum on the fine scale with emphasis on non-homogeneous boundary
conditions is given by Forest and Trinh (2011), in this context see also For-
est (2002) and Jänicke et al. (2009). An application of the computational
homogenization scheme for structured thin sheets has been proposed by
Geers et al. (2007) and Gruttmann and Wagner (2013). Here, the RVE
resolves the full thickness of the thin sheet and the nature of the coupling
of deformation between the shell-type macro-scale and the microstructure
is of second-order.
Another non-classical approach, denoted as a multi-scale strategy for strong-
ly coupled scales, has been proposed by Ibrahimbegović and Markovič (2003).
Here, the authors attach a part of the microstructure at each finite element
of the macro-scale, for details see Markovic et al. (2005) and Niekamp et al.
(2009). This is in contrast to the weakly coupled scales, where we attach an
RVE of the microstructure at each point of the macrostructure, i.e., at each
Gauss point in the discrete version obtained from the FE2-method.

Recent developments are concerned with direct two-scale homogeniza-
tion techniques for thermo-mechanically coupled problems, Özdemir et al.
(2008), and for electro-mechanically coupled problems concerning the gen-
eral localization and homogenization scheme, Schröder (2009), as well as
the numerical treatment Schröder and Keip (2011, 2012).
Another important topic is the characterization of random microstructures,
Ohser and Mücklich (2000), and the identification of statistically represen-
tative volume elements, see e.g. Kanit et al. (2003), Stroeven and Askes
(2004), Temizer and Zohdi (2007). From the computational point of view,
the application of statistically similar representative volume elements, which
have less complexity than the original random microstructure, could lead
to a significant reduction in computation time. Basic considerations for the
definition and optimization procedures based on suitable statistical mea-
sure are discussed in Povirk (1995), Ostoja-Starzewski (2006), Balzani et al.
(2009, 2010), Schröder et al. (2010), Ambrozinski et al. (2012), in this con-
text see also Swaminathan et al. (2006) and Zohdi and Wriggers (2005).
Details on the construction of statistically similar representative volume
elements are presented in the contribution by Balzani et al. in this book.
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2 Direct Micro-Macro Transition Approach

For the analysis of micro-heterogeneous materials, where we want to take
into account the microstructure directly, the transition between the macro-
and the micro scale has to be defined, cf. Fig. 1. The direct micro-macro
homogenization scheme, based on the finite element discretization of both
scales, allows for the computation of macroscopic boundary value problems
in consideration of RVEs, which should represent the main characteristics
of the associated micro-continuum.

B

macro-continuum micro-continuum

P , F P , F

idealizations

real heterogeneous structure

L

L

l

x ∈ B
B

x ∈ B

l

Figure 1. Schematic illustration of the direct homogenization procedure.
Notation: macroscopic first Piola-Kirchhoff stresses P and deformation gra-
dient F ; their microscopic counterparts are denoted by P and F , taken from
Schröder et al. (2010)

Since the definition of the individual scales, like macro-, meso- and micro-
scale, is somewhat arbitrary, we denote the coarse and fine scale as the
macro- and micro-scale, respectively. The main technical ingredients for
the two-scale homogenization procedure for mechanical problems are:

• Definition of a RVE and choosing suitable boundary conditions: The
boundary conditions for the microscopic boundary value problem are
in general not given a priori. Suitable boundary conditions can be de-
rived by the Hill-Mandel condition, which equates the virtual macro-
scopic work with the averaged virtual work performed within theRVE .

• Discretization of the microscopic boundary value problem.
• Discretization of the macroscopic boundary value problem.
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The main advantage of a direct two-scale homogenization scheme is that
we do not have to define a macroscopic phenomenological constitutive law;
this is replaced by suitable averages over the RVE . Nevertheless, we have
to set up constitutive models for the individual phases on the fine scale. If
the local distributions of the deformation and stress measures within the
RVE are computed, we can calculate their macroscopic counterparts by
suitable surface or volume integrals over the representative volume element,
which are attached at each macroscopic point. Therefore, the numerical
micro-to-macro procedure is based on the following consecutive steps:

a) Localization step, boundary value problem on the micro-scale: compu-
tation of the local distribution of the deformation and stress measures
within the RVE by solving the weak form of the balance of linear
momentum.

b) Homogenization step: computation of the macroscopic quantities, e.g.
the first Piola-Kirchhoff stresses, by means of suitable averages.

c) Boundary value problem on the macro-scale: solving the weak form of
balance of linear momentum on the coarse scale.

These steps have to be repeated until convergence on both scales is obtained.

2.1 Boundary value problem on the macro-scale

Let the reference configuration of the body of interest on the macro-
scopic scale B0 ⊂ R3 be parameterized in X. The macroscopic nonlinear
deformation map is denoted as ϕt(X); it maps points X of the reference
configuration onto points x of the actual configuration Bt, see Figure 2.
The fundamental deformation measure is the macroscopic deformation gra-
dient, defined by

F (X) := GradX [ϕt(X)] with F
a
A :=

∂xa

∂X
A
, (5)

which maps macroscopic infinitesimal line elements dX from the reference
configuration to the current configuration, i.e.,

dx = F dX . (6)

Let dA = N dA and da = n da denote the infinitesimal vectorial area
elements with respect to the reference and current configuration, repectively.
The transformation between the quantities is

da = [Cof F ]dA with Cof F = J F
−T

, (7)
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E3, e3

E2, e2

Cof F

E1, e1

detF

dv

Bt

dx

x

F

X

B0

x = ϕ(X, t)
dX

dA

da

dV

Figure 2. Mapping of infinitesimal line-, vectorial area- and volume-
elements from the reference to the actual configuration at the macro-scale.

using Nanson’s formula and the abbreviation J = detF for their Jacobian
determinant. The relation between the macroscopic infinitesimal volume
elements dV of the reference and dv of the current configuration reads

dv = J dV . (8)

As a suitable deformation measure, we introduce the macroscopic right
Cauchy-Green tensor

C := F
T
F . (9)

With the first Piola-Kirchhoff stress tensor P the Kirchhoff stresses, the
Cauchy stresses and the second Piola-Kirchhoff stresses can be computed by

τ = P F
T
, σ =

1

J
P F

T
and S = F

−1
P , (10)

respectively. The balance of linear momentum at the macroscopic scale,
neglecting acceleration terms, requires

DivXP + f = 0 . (11)

Furthermore, the macroscopic balance of moment of momentum, i.e.,

P F
T
= F P

T
(12)

is assumed to be satisfied a priori by symmetry requirements of the macro-
scopic Kirchhoff stress tensor.
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2.2 Boundary value problem on the micro-scale

In analogy to the description of the mechanical quantities on the macro-
scale, we parametrize the reference placement of the RVE on the micro-
scale B0 ⊂ R3 with X. The nonlinear deformation map on the micro-scale
is denoted as ϕt(X), which maps points X of the reference placement onto
points x of the current placement Bt.

E1, e1

Bt

x = ϕ(X, t)

E2, e2

dx

da

dv

x

B0

dV

dX

dA

XE3, e3

detF

Cof F

F

Figure 3. Transport theorems at the micro-scale: Mapping of infinitesimal
geometrical elements from the reference to the actual configuration.

The microscopic deformation gradient is defined by

F (X) := GradX [ϕt(X)] with F a
A :=

∂xa

∂XA
, (13)

which maps microscopic infinitesimal line elements dX from the reference
configuration to the current configuration, i.e.,

dx = FdX . (14)

The transformation of the infinitesimal vectorial area elements of the refer-
ence configuration dA = N dA to the area elements of the current configu-
ration da = n da is given by

da = [Cof F ]dA with Cof F = J F−T , (15)

using the abbreviation J = detF . The microscopic infinitesimal volume
elements dV and dv of the reference and current configuration, respectively,
transform with

dv = J dV . (16)
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As further deformation measures, we introduce the microscopic right Cauchy-
Green tensor and the microscopic Finger tensor

C := F TF and b := FF T , (17)

respectively. Starting from the microscopic first Piola-Kirchhoff stress ten-
sor P , we can compute the microscopic Kirchhoff-, Cauchy- and second
Piola-Kirchhoff stresses by

τ = P F T , σ =
1

J
τ and S = F−1 P , (18)

respectively. The balance of linear momentum, neglecting body forces, is
given by

DivXP = 0 or divxσ = 0 , (19)

with respect to the reference and actual placement, respectively. Equa-
tion (19)2 is derived from (19)1 by setting P = σCofF and applying the
Piola identity

DivX [CofF ] = 0 . (20)

The balance of moment of momentum

PF T = FP T . (21)

is assumed to be satisfied a priori by symmetry requirements of the Kirchhoff
stress tensor, which are guaranteed by the constitutive modeling.

2.3 Macro-variables and microscopic counterparts

An extension of the micro-macro transition framework from small to fi-
nite strains has been given in Hill (1972). The determinant J of the macro-
scopic deformation gradient is related to its microscopic counterpart by the
volume averages

J =
1

V

∫
B0

J dV =
1

V

∫
Bt

dv =
v

V
, (22)

here V denotes the reference and v the actual volume of the RVE . Let us
assume that theRVE in its reference placement has a hole L0 with boundary
∂L0, then the volume average of deformation gradient can be expressed by

1

V

∫
B0

F dV =
1

V

∫
∂B0

x⊗N dA+
1

V

∫
∂L0

x⊗N dA . (23)
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Furthermore, the volume average of the first Piola-Kirchhoff stress tensor is
then given by the surface integrals

1

V

∫
B0

P dV =
1

V

∫
∂B0

t0 ⊗X dA+
1

V

∫
∂L0

t0 ⊗X dA , (24)

with t0 = PN and the outward unit normal N . In order to get a simple
correlation of the macroscopic quantities in terms of suitable integrals over
the RVE with experimental set-ups, we define the macroscopic deforma-
tion gradient and the first Piola-Kirchhoff stress tensor in terms of surface
integrals over the boundary ∂B0 of the RVE :

F =
1

V

∫
∂B0

x⊗N dA , P =
1

V

∫
∂B0

t0 ⊗X dA . (25)

By analogy with the previous relations, we obtain

Ḟ =
1

V

∫
∂B0

ẋ⊗N dA , Ṗ =
1

V

∫
∂B0

ṫ0 ⊗X dA . (26)

In the following, we neglect holes L0, then the surface integrals (25, 26) are
identical to their volume averages. Similar arguments have to be applied if
singular surfaces are taken into account, see e.g. Schröder (2000).

For the following algebraic manipulations we introduce an additive de-
composition of the microscopic deformation gradient in a constant and a
fluctuation part, i.e.,

F = F + F̃ . (27)

Integration of (27) over the representative volume element yields

F =
1

V

∫
B0

F dV =
1

V

∫
B0

(F + F̃ ) dV = F +
1

V

∫
B0

F̃ dV . (28)

The implication of the latter relation is that the volume averages of the
fluctuation part F̃ vanish, i.e.,

1

V

∫
B0

F̃ dV = 0 . (29)

If we further assume that the fluctuation part of the microscopic defor-
mation gradient can be computed by F̃ = GradXw̃, where w̃ represents
the fluctuation part of the deformation field on the micro-scale, then the
following condition holds:

1

V

∫
∂B0

w̃ ⊗N dA = 0 . (30)
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By analogy with the decomposition of the microscopic deformation gra-
dient, we introduce an additive decomposition of the microscopic first Piola-
Kirchhoff stresses in a constant and a fluctuation part, i.e.,

P = P + P̃ . (31)

The evaluation of the integral of the decomposition (31) over the RVE yields

P =
1

V

∫
B0

P dV =
1

V

∫
B0

(P + P̃ ) dV = P +
1

V

∫
B0

P̃ dV , (32)

which implies
1

V

∫
B0

P̃ dV = 0 . (33)

Based on the definition of the traction vector t0 = PN = (P + P̃ )N we

introduce the abbreviation t0 = t0 + t̃0 with t0 = PN and t̃0 = P̃N .
Inserting these quantities in (25)2 yields

P =
1

V

∫
∂B0

(t0 + t̃0)⊗X dA . (34)

From one part of the surface integral we derive the relation

1

V

∫
∂B0

t0 ⊗X dA =
1

V

∫
∂B0

(PN)⊗X dA = P
1

V

∫
∂B0

N ⊗X dA , (35)

which yields with the relation
1

V

∫
∂B0

N ⊗X dA = 1 the identity

1

V

∫
∂B0

t0 ⊗X dA = P . (36)

Therefore, we conclude from (34) that for an equilibrium state

1

V

∫
∂B0

t̃0 ⊗X dA = 0 (37)

holds. In general, other macroscopic quantities are defined by the stan-
dard transformations using the macroscopic stress- and deformation tensors.
Thus, the macroscopic Kirchhoff stresses τ are defined as

τ = P F
T
=

1

V

∫
B0

P dV

(
1

V

∫
B0

F dV

)T

. (38)
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In a similar way, we define the macroscopic Cauchy stresses by the trans-
formation

σ =
1

J
P F

T
=

1

J
τ =

1

J

(
1

V

∫
B0

P dV

) (
1

V

∫
B0

F dV

)T

. (39)

Also the definition of the macroscopic Cauchy-Green tensor is based on the
product of the macroscopic deformation gradient, i.e.,

C = F
T
F =

(
1

V

∫
B0

F dV

)T (
1

V

∫
B0

F dV

)
, (40)

A simple volume averaging of the microscopic Cauchy-Green tensor

1

V

∫
B0

C dV =
1

V

∫
B0

F TF dV , (41)

leads with the decomposition F = F + F̃ to the expression

1

V

∫
B0

(F + F̃ )T (F + F̃ ) dV = F
T
F +

1

V

∫
B0

F̃ T F̃ dV

+
1

V

∫
B0

(F̃ TF + F
T
F̃ ) dV .

(42)

The integral term on the right-hand side∫
B0

(F̃ TF + F
T
F̃ ) dV =

∫
B0

F̃ T dV F + F
T
∫
B0

F̃ dV (43)

vanishes obviously, thus the remaining expression of (41) is

1

V

∫
B0

C dV = F
T
F +

1

V

∫
B0

F̃ T F̃ dV , (44)

which differs from (40) by the integral term on the right-hand side in (44).
Equivalences between the definitions (38) and (39) and direct averages

of τ and σ with respect to the volume of the RVE in the reference and
actual placement, respectively, i.e.

τ ≡
1

V

∫
B0

τ dV , σ ≡
1

v

∫
Bt

σ dv (45)

hold only for specific boundary conditions and geometries, see e.g. de Souza
Neto and Feijoo (2008). If the conditions are satisfied, we obtain for the
Kirchhoff stresses and by analogy for the Cauchy stresses, assuming (19):

1

V

∫
B0

τ dV =
1

V

∫
∂B0

t0 ⊗ x dA ,
1

v

∫
Bt

σ dv =
1

v

∫
∂Bt

t⊗ x da (46)
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with t = σn and the outward unit normal n on ∂Bt. Useful relations
for further kinematical quantities and stress measures in finite deforma-
tion plasticity are given in Nemat-Nasser (1999); for the elastoplasticity of
polycrystals see Clayton and McDowell (2003).

2.4 Macro-homogeneity condition

One of the most important relations in micro-macro transition schemes is
the macro-homogeneity condition (also denoted as Hill’s condition or Hill-
Mandel condition), Hill (1965a) and Mandel (1972). In the finite strain
setting, we define the condition as

P : Ḟ =
1

V

∫
∂B0

t0 · ẋ dA , (47)

which leads with the algebraic manipulations

1

V

∫
∂B0

t0 · ẋ dA =
1

V

∫
∂B0

(PN) · ẋ dA =
1

V

∫
∂B0

P : ẋ⊗N dA

and the application of the Gaussian integral theorem∫
∂B0

P : ẋ⊗N dA =

∫
B0

DivX [ẋP ] dV =

∫
B0

(P : GradX ẋ+ ẋDivXP ) dV

and taking into account the equilibrium condition (19) to the volume average

P : Ḟ =
1

V

∫
B0

P : Ḟ dV , (48)

with Ḟ = GradX ẋ. It should be noted that the macro-homogeneity con-
dition of Hill and Mandel is written as the volume average of the scalar
product of first Piola-Kirchhoff stresses and the deformation gradient with
respect to the parametrization of the RVE in the reference placement.

2.5 Constraint/Boundary conditions on the micro-scale

Following the explanations of Hill (1984), we write the identity

1

V

∫
B0

P : Ḟ dV − P : Ḟ =
1

V

∫
B0

((P − P ) : (Ḟ − Ḟ )) dV . (49)

If the right-hand side of the latter equation vanishes, the theorem of product
averages (48) is satisfied. Two simple solutions are obtained by setting

P = P ∀X ∈ B0 or Ḟ = Ḟ ∀X ∈ B0 , (50)
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where the first assumption of constant stresses over the RVE is associated
to the estimate of Reuss and the second of a constant deformation gradient
to the estimate of Voigt. In the following, we denote the implications in
(50) as constraint conditions.

Let us now consider the right-hand side of (49); with the definition of
the microscopic deformation gradient (13) and the relation GradXX = 1,
we obtain ∫

B0

(P − P ) : (GradX ẋ− Ḟ GradXX) dV . (51)

With the equilibrium requirement DivX(P − P ) = 0 and the Cauchy the-
orem t0 = PN , we derive the following equivalent expression of (48):∫

∂B0

(t0 − PN) · (ẋ− ḞX) dA = 0 . (52)

The above relations do not only hold for GradX ẋ = Ḟ , but also for δF as

well as for F , etc.; therefore, we can replace Ḟ by δF and F . Dirichlet
boundary conditions are defined by setting the second bracket term in (52)
equal to zero, it follows

x = FX ∀X ∈ ∂B0 . (53)

Analogously, enforcing the first bracket term in (52) to be zero yields the
Neumann boundary conditions

t0 = PN ∀X ∈ ∂B0 . (54)

For the derivation of periodic boundary conditions we decompose the bound-
ary of the microstructure ∂B0 into two associated parts

∂B0 = ∂B−0 ∪ ∂B+
0 . (55)

Every point X+ ∈ ∂B+ is assumed to have an associated point X− ∈ ∂B−

with outward unit normals N+ and N−, respectively. Since F as well as X
are assumed to be given quantities, we define the fluctuation field

w̃ := x− FX . (56)

Thus, the macro-homogeneity condition (52) appears as∫
∂B0

(t0 − PN) · w̃ dA =

∫
∂B

+

0

(t+0 − PN+) · w̃+ dA

+

∫
∂B
−

0

(t−0 − PN−) · w̃− dA .

(57)
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Table 1. constraint conditions & boundary conditions (bcs)

Reuss P = P ∀X ∈ B0

Voigt F = F ∀X ∈ B0

Dirichlet bcs x = FX ∀X ∈ ∂B0

Neumann bcs t0 = PN ∀X ∈ ∂B0

w̃ = x− FX

periodic bcs w̃+ = w̃− ∀X+ ∈ ∂B+
0 and X− ∈ ∂B−0

t+0 = −t−0

A periodic fluctuation field is characterized by w̃+ = w̃− at associated
points, with the essential requirement N+ = −N− it follows∫

∂B
+

0

{
(t+0 − PN+) · w̃+ + (t−0 + PN+) · w̃+

}
dA =

∫
∂B

+

0

(t+0 + t−0 ) · w̃
+ dA .

(58)
The latter expression is identical to zero if t+0 = −t−0 holds.

An appropriate requirement for the type of the boundary condition to
be used can be rephrased as follows

• Suquet (1987): ”The boundary conditions must reproduce, as closely
as possible, the in situ state of the RVE inside the material”.

It should be noted that linear boundary displacements yield an energetically
upper bound, whereas uniform boundary tractions provide a lower bound of
the homogenized system. Nevertheless, the choice of the boundary condition
influences the mechanical response in many cases:

• Xia et al. (2003): “... ’homogeneous boundary conditions’ are not
only over-constrained but they may also violate the boundary traction
periodicity conditions.”.

For periodic media, a natural course of action are periodic boundary con-
ditions. They can be realized in a strong format, i.e., one part of the dis-
cretized boundary of the RVE (the image boundary, e.g. ∂B−0 ) must be
completely mirrored to the nodes on the associated part of the boundary
(the mirror boundary ∂B+

0 ). Alternatively, a weak format of the periodic
boundary conditions is proposed in Larsson et al. (2011). In this context,
we also refer to Miehe and Bayreuther (2007).
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In order to discuss the influence of the different boundary conditions on
the mechanical response, we consider a periodic microstructure with stiff
inclusions embedded in a weak matrix, as shown in Fig. 4a.

b)

a) c)

Figure 4. Periodic microstructure: a) Continuous matrix with periodically
distributed inclusions. RVEs with b) a centric and c) an eccentric inclusion,
see Schröder (2000).

For the analysis we choose unit cells which are discretized with 20×20 equal-
sized quadrilateral elements, the inclusion is discretized with 8×8 elements.
We choose a unit cell with a centric inclusion, as depicted in Fig. 4b and one
unit cell with an eccentric inclusion, cf. Fig. 4c. The simulation is carried
out for small strains under plain strain conditions and we apply an isotropic
constitutive law for both, the weak matrix and the stiffer inclusion material.
As mentioned above, for the considered periodic media the natural choice
are periodic boundary conditions. That means, that for both unit cells, cf.
Fig. 4b,c, the periodic boundary conditions must yield identical results. For
the macroscopic loading

F = diag[ 1.0005 ; 1.0 ; 1.0 ] , (59)

we obtain the stress distribution as depicted in Fig. 5. In both cases, the
macroscopic Cauchy stress tensor has only non-vanishing and identical di-
agonal components, as expected; the values of the components of the stress
tensor (in consistent units) are

σper = diag[ 837.4 ; 490.7 ; 530.7 ] . (60)

These stress values will be applied to the unit cells when we analyze the
Neumann boundary conditions. The stress response for the Dirichlet bound-
ary conditions is depicted in Fig. 6. For the unit cell with centered inclu-
sion, the macroscopic stress tensor is also diagonal and the values differ
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Figure 5. Stress σ11 in the unit cells with centric (left) and eccentric (right)
inclusion under periodic boundary conditions, see Schröder (2000).

approximately by 1% compared to (60) and the local stress distribution is
comparable to the ones in Fig. 5. Considering the unit cell with the ec-
centric inclusion, we observe a symmetry-break in the stress distribution.
Nevertheless, the stress components deviate from the components in (60)
by approx. 3%, in addition the off-diagonal element of σ is not vanishing.

Figure 6. Stress σ11 in the unit cells with centric (left) and eccentric (right)
inclusion under Dirichlet boundary conditions, see Schröder (2000).

Applying the stress values of (60) as loading conditions for the Neumann
boundary conditions, we get the results shown in Fig. 7. The macroscopic
deformation gradient should be close to (59). The deviation for both unit
cells is approximately up to 8% and again we observe a symmetry-break in
the local stress distribution for the unit cell with the eccentric inclusion.
Sum up: As expected, periodic boundary conditions yield the best results.

Figure 7. Stress σ11 in the unit cells with centric (left) and eccentric (right)
inclusion under Neumann boundary conditions, see Schröder (2000).
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2.6 Remarks on the Choice of the RVE

The choice of the representative volume element (RVE) for the applica-
tion to a two-scale homogenization scheme is an ongoing research topic. In
general, the RVE should be a partial volume of the material, which is sta-
tistically homogeneous from the macroscopic point of view. Furthermore,
the choice of a RVE is not unique, see Fig. 8.

a1

a1 a1

a2

a2

a2

a1

a2

Figure 8. Non-uniqueness of the RVEs of a periodically arranged mi-
crostructure. The dashed boxed regions represent four possible RVEs, see
Schröder (2000).

In Zeman (2003), several properties for the definition of a RVE , taken
from the literature, are summarized:

• Hill (1963): “This phrase (the RVE) will be used when referring to
a sample that (a) is structurally entirely typical of the whole struc-
ture on average, and (b) contains sufficient number of inclusions for
the apparent overall moduli to be effectively independent of the sur-
face value of traction and displacement, so long as these values are
”macroscopically uniform””

• Hashin (1983): “The RVE is a model of the material to be used to
determine the corresponding effective properties of the homogenized
macroscopic model. The RVE should be large enough to contain suf-
ficient information about the microstructure in order to be represen-
tative, however it should be much smaller than the macroscopic body.”

• Drugan and Willis (1996): “The RVE is the smallest material volume
element of the composite for which the usual spatially constant ”over-
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all modulus” macroscopic constitutive representation is a sufficiently
accurate model to represent the mean constitutive response.”

• Ostoja-Starzewski (2001): “The RVE is very clearly defined in two
situations only: (i) it is a unit cell of a periodic microstructure, and
(ii) volume containing a very large set of micro-scale elements, pos-
sessing statistically homogeneous and ergodic properties.”

• Stroeven et al. (2002): “The determination of the RVE size is by no
means straightforward. It depends on the material under considera-
tion, but also on the structure sensitivity of the physical quantity that
is measured. Normally, elastic moduli are taken as the governing pa-
rameter, however, other quantities can also be taken, such as energy
dissipation in case of microstructural cracking.”

A note on periodic unit cells: In periodic media, typically unit cells,
which are translationally symmetric, are used as RVEs. In order to design
(sub-) unit cells with a lower number of degrees of freedom, Ohno et al.
(2001) exploited the point symmetrical distribution of the mechanical field
quantities with respect to the center of the considered unit cell. Substantial
savings in computer time can also be realized when the unit cell possesses
further special symmetries, see Flores and de Souza Neto (2010).

A note on random microstructures: Capturing the random nature of
microstructures is a challenge in homogenization (effective macroscopic de-
scription). The lack of microstructural periodicity implies that we have to
analyze statistical volume elements (SVEs) instead of RVEs. Mathema-
tical tools for the characterization of random microstructures are discussed
in Ohser and Mücklich (2000). A brief introduction of basic morpholog-
ical measurements for a quantitative characterization of the geometry of
random microstructures is given in Jeulin and Ostoja-Starzewski (2001).
From the viewpoint of stochastical mechanics, we could consider ensemble
averages over several realizations of the microstructure. From the practical
point of view, we are interested in only one realization of the microstruc-
ture in order to achieve a sufficient estimate of the macroscopic mechanical
response. Furthermore, the interchangeability of the ensemble averaging
and volume averaging (in general for sufficiently large microstructures) is a
key assumption in this field, which is based on the concepts of statistical
homogeneity and ergodicity, see Jeulin and Ostoja-Starzewski (2001) and
Ostoja-Starzweski (2008).
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3 Algorithmic Treatment

This chapter concerns the theoretical and numerical treatment of a discrete
two-scale homogenization scheme, also known as the FE2-method or direct
micro-macro transition approach. A major role plays the coupled numerical
solution of the boundary value problems on both scales. Especially the
consistent linearization of the effective macroscopic response function can
be seen as a crucial part in this numerical scheme. In the following, the
(matrix) approximations of the field quantities are denoted by a superscript
h, e.g., the discrete counterpart of x is denoted as xh.

3.1 Boundary Value Problems on the Macro- and Micro-Scale

The balance of linear momentum at the macro-scale (11) can be written
in its weak form as

G = −

∫
B0

δx ·
(
DivXP + f

)
dV (61)

with G = 0 at the equilibrium state. Application of the relation

δx ·DivX P = DivX [δxP ]−GradX δx : P (62)

and the Gauss integral theorem yields the modified expression

G =

∫
B0

δF : P dV︸ ︷︷ ︸
=: G

int

−

{∫
B0

δx · f dV +

∫
∂B0

δx · t0 dA

}
︸ ︷︷ ︸

=: G
ext

(63)

with t0 = P N . For the discretization of the macroscopic boundary value
problem, we apply the following discretizations for the actual, virtual and
incremental deformation within a typical finite element

xh = X
h
+ N

ed , δxh = N
eδd , Δxh = N

eΔd , (64)

respectively. Here the matrix N
e contains the classical ansatz-functions and

the vectors {d , δd ,Δd} represent the actual, virtual and incremental nodal
displacements. With the Be-matrices containing the partial derivatives of
the ansatz functions with respect to reference coordinates, we define the
approximations of the actual, virtual and incremental deformation tensors

F
h
= 1h + B

ed , δF
h
= B

eδd , ΔF
h
= B

eΔd . (65)
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Inserting the approximations for the virtual fields (64) and (65) in Eq. (63)

yields the approximation of G(x, δx) by G
h
(xh, δxh), i.e.

G
h
=
∑
e

G
e
(xh, δxh) =

∑
e

G
e,int

(xh, δxh)−
∑
e

G
e,ext

(xh, δxh) . (66)

If the weak form (63) is associated with a typical finite element, we get the
expressions for the internal and external parts

G
e,int

(xh, δxh) = δd
T
∫
B

e

0

B
eTP

h
dV︸ ︷︷ ︸

=: re,int

, (67)

and

G
e,ext

(xh, δxh) = δd
T

{∫
B

e

0

N
ef

h
dV +

∫
∂B

e

0

N
et

h

0 dA

}
︸ ︷︷ ︸

=: re,ext

. (68)

With this, the element residual vector re is computed by re = re,int − re,ext.

To solve the nonlinear weak formG
h
(xh, δxh) we apply the Newton-Raphson

iteration scheme. Therefore, the linerization ofG
h
(xh, δxh) at xh = xh∗ has

to be computed:

LinG
h
(xh∗, δxh,Δxh) = G

h
(xh∗, δxh) + ΔG

h
(xh∗, δxh,Δxh) . (69)

The linear increment is defined as the directional derivative of G
h
at xh in

the direction of the incremental deformation Δxh, i.e.,

ΔG
h
(xh∗, δxh,Δxh) =

d

dε

[
G

h
(xh∗ + εΔxh, δxh)

]∣∣∣∣
ε=0

. (70)

For dead-loaded systems the linear increment of the discrete form of G is
formally given by

ΔG
h
=
∑
e

ΔG
e,int

(71)

and the linear increment for a typical element is calculated by

ΔG
e,int

=

∫
B

e

0

δF
hT

A
h
ΔF

h
dV = δd

T
∫
B

e

0

B
eT

A
h
B
e dV︸ ︷︷ ︸

=: k
e

Δd . (72)
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For the computation of the stiffness matrix k
e
for a macroscopic element,

we need the macroscopic (overall) algorithmic consistent moduli A, which
is formally defined by the partial derivative

A =
∂P

∂F
with P =

1

V

∫
B0

P (F ) dV . (73)

This fourth-order tensor cannot be computed directly, becauce we have no
explicit expression of the macroscopic first Piola-Kirchhoff stress tensor P
as a function of its work-conjugated variable, the macroscopic deformation
gradient F . An efficient algorithmic treatment of handling this is presented
in the next chapter; therefore, we assume the algorithmic consistent moduli
A as known at this point. Thus, the linearization yields

numele∑
e=1

{
δd

T
(
k
e
Δd+ re

)}
= 0 , (74)

where numele denotes the number of macroscopic finite elements. The ap-
plication of the assembling procedure yields the system of equations

KΔD = −R with K =
numele

A
e = 1

k
e

and R =
numele

A
e = 1

re , (75)

where A denote the standard assembling operators. The solution of the
latter system of equations yields an increment of the actual deformation
field. This procedure has to be repeated until an equilibrium state of the

macroscopic boundary value problem has been reached, i.e. G
h
(x, δx) ≈ 0.

The weak form of the balance of linear momentum at the microscale,
based on the expression (19)1, is given by

G = −

∫
B0

δx ·DivXP dV (76)

with G = 0. Here, we are neglecting the volume acceleration and inertia
terms. Taking into account the additive split of the deformation into a linear
map FX and a fluctuation part w̃, we obtain the following representation
of the microscopic deformation tensor F = GradX x:

F = F + F̃ with F̃ = GradX w̃ . (77)

With this in hand, we get the modified expression

G =

∫
B0

δF̃ : P dV . (78)
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Note that the part F of the microscopic deformation gradient F is given
and constant over the RVE .

For the discretization of the microscopic boundary value problem, we apply
the following discretizations for the actual, virtual and incremental fluctu-
ation within a typical finite element

w̃h = N
ed̃ , δw̃h = N

eδd̃ , Δw̃h = N
eΔd̃ , (79)

respectively. Here, the matrix N
e contains the classical ansatz-functions

and the vectors {d̃ , δd̃ ,Δd̃} represent the actual, virtual and incremental
nodal fluctuations. With the Be-matrices containing the partial derivatives
of the ansatz functions with respect to reference coordinates, we define the
approximations of the actual, virtual and incremental deformation tensors

F̃ h = B
ed̃ , δF̃ h = B

eδd̃ , ΔF̃ h = B
eΔd̃ . (80)

Inserting the approximations for the virtual fields (79) and (80) in (78) leads
to the discrete counterpart Gh of G:

Gh(xh, δxh) =
∑
e

Ge(xh, δxh) (81)

with

Ge(xh, δxh) = δdT

∫
Be

0

B
eTP h dV︸ ︷︷ ︸
=: re

. (82)

To solve the nonlinear discrete weak formGh(xh, δxh), we apply the Newton-
Raphson iteration scheme and apply the linerization analogously to the
procedure at the macro-scale described above. Finally, we obtain the linear
increment for a typical microscopic finite element

ΔGe =

∫
Be

0

δF̃ h
T
A

hΔF̃ h dV = δd̃
T
∫
Be

0

B
eT

A
h
B
e dV︸ ︷︷ ︸

=: ke

Δd̃ . (83)

The application of the standard assembling operator, cf. Eq. (75), to the
microscopic stiffness matrices and the residual vectors result in the system
of equations

KΔD̃ +R = 0 . (84)

From this system of equations, we obtain an update of the discrete fluctua-
tion field and evaluate the discrete weak form (82). If the euclidian norm of
R is higher than a given tolerance, we apply further Newton iteration steps
until convergence is achieved.
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3.2 Computation of Algorithmic Consistent Overall Moduli

In the previous section, we assumed that the macroscopic overall mod-
uli A was given during the solution process at the macro-scale. However,
in contrast to the macroscopic stress tensor P , which can be calculated
directly as the volume average of the microscopic counterparts, the macro-
scopic moduli cannot be consistently computed solely by volumetric averag-
ing. Starting from the incremental constitutive relation at the macro-scale

ΔP =

{
1

V

∂

∂F

∫
B

P (F ) dV

}
: ΔF =: A : ΔF , (85)

we define the overall (effective) nominal moduli as follows

A =
1

V

∫
B

∂

∂F
P (F ) dV =

1

V

∫
B

∂P (F )

∂F
:
∂F

∂F
dV . (86)

Let us now exploit the additive decomposition of F into a constant and a
fluctuating part. Substituting

F = F + F̃ , (87)

in Equation (86) yields

A =
1

V

∫
B

∂P (F )

∂F
:
∂(F + F̃ )

∂F
dV . (88)

Thus, we obtain with the abbreviation A := ∂FP (F )

A =
1

V

∫
B

A dV +
1

V

∫
B

A :
∂F̃

∂F
dV . (89)

In the latter equation, the computation of the sensitivity of F̃ with respect
to F is the crucial part. Starting from the weak form of the balance of linear
momentum at the micro-scale (78) at an equilibrium state, i.e., G = 0, then
the linearization yields ∫

B

δF̃ : A : ΔF dV = 0 . (90)

Substituting the additive split (87) in (90) yields∫
B0

δF̃ : A : ΔF dV︸ ︷︷ ︸∫
B0

δF̃ : A dV : ΔF

+

∫
B0

δF̃ : A : ΔF̃ dV = 0 . (91)
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The discrete counterpart of the latter equation appears after inserting the
approximations of the fluctuation part of the deformation gradient (80) as

numele∑
e=1

δd̃
T

{∫
Be

0

B
eT

A
h dV︸ ︷︷ ︸

le

ΔF
h
+

∫
Be

0

B
eT

A
h
B
e dV︸ ︷︷ ︸

ke

Δd̃

}
= 0 , (92)

where numele denotes the number of microscopic finite elements, ke the
element stiffness matrices, see also (83), and le the matrices, which take
into account the sensitivity of the moduli of the individual finite elements.
Thus, in contracted matrix notation, we obtain

numele∑
e=1

{
δd̃

T
(
leΔF

h
+ keΔd̃

)}
= 0 . (93)

Application of a standard assembling procedure, cf. Eq. (75), yields

δD̃T
(
KΔD̃ +L ΔF

)
= 0 . (94)

The global stiffness matrix K and the generalized right hand sides L are
defined as

K =
numele

A
e = 1

ke , L =
numele

A
e = 1

le . (95)

Formally, the solution of Eq. (94) is achieved by

ΔD̃ = −K−1LΔF
h
, (96)

which represents the incremental fluctuation field as a consequence of an
incremental macroscopic deformation gradient. Inserting the elementwise
solutions Δd̃ of (96) in (80)3 and substituting this result into Eq. (89)
yields

A
h
=

1

V

numele∑
e=1

∫
Be

A
h dV︸ ︷︷ ︸

A
Voigt

+
1

V

numele∑
e=1

∫
Be

A
h ∂(BeΔd̃)

∂F
h

dV , (97)

where A
Voigt denotes the (numerical approximation of the) Voigt upper

bound. The second integral term in (97) can be reformulated as

1

V

numele∑
e=1

∫
Be

A
h ∂(BeΔd̃)

∂F
h

dV =
1

V

numele∑
e=1

∫
Be

A
h
B
e dV︸ ︷︷ ︸

le�

∂Δd̃

∂F
h
, (98)
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where le� = leT if A fullfills the major symmetries, i.e., Aijkl = Aklij .
This symmetry relation is provided in the following. After assembling the
discrete form, we get with (96) and the linear increment

ΔF
h
= F

h
− F

h

n , (99)

based on the nomenclature

F
h
= F

h
(tn+1) and F

h

n = F
h
(tn) , (100)

the algebraic expression

1

V
LT ∂ΔD̃

∂F
h

= −
1

V
LT K−1L

∂ΔF

∂F
h

= −
1

V
LT K−1L . (101)

Thus, the final result for the algorithmic consistent overall moduli is

A = A
Voigt −

1

V
LTK−1L with A

Voigt =
1

V

∑
e

∫
Be

A
h dV , (102)

see Miehe et al. (1999a,b).
In general, huge computational costs in typical direct nonlinear homog-

enization schemes are governed by using the Newton-Raphson iteration on
both scales at each quadrature point. For the efficient computation of the
second term in (102)1, we identify

LTK−1L = LT
X. (103)

Here, X is the solution of a system of equations with several, e.g. nine in
3D, right hand sides which are organized in the matrix L:

KX = L . (104)

For the solution of (103) as well as for the solutions of the weak forms, the
sparse structure of all matrices is taken into account.
A study of efficient two-scale homogenization algorithms for nonlinear prob-
lems using approximations of the Schur-Complement of the microscopic
stiffness matrix based on e.g. LU factorizations is presented in Okada et al.
(2010). Several works in the literature are concerned with the derivation of
the overall tangent moduli as well as with different approaches (associated
to Schur complement computation, perturbation techniques, penalty formu-
lations, Lagrange multiplier methods) useful for efficient computations, in
this context we refer to Miehe et al. (1999a), Schröder (2000), Kouznetsova
et al. (2001), Miehe and Koch (2002), Miehe (2003), Miehe and Bayreuther
(2007), Temizer and Wriggers (2008) and Schröder and Keip (2012).
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4 Stability Problems at Different Scales

A challenge in two-scale homogenization techniques is the consideration of
instability problems on the different scales, cf. Abeyaratne and Triantafyl-
lidis (1984), Triantafyllidis and Maker (1985), Müller (1987), Geymonat
et al. (1993), Miehe et al. (2002), Schröder (2010). In the following, we re-
strict ourselves to hyperelastic materials and distinguish between structural
instabilities and material instabilities. Let

Π(x) = Π
int

(F ) + Π
ext

(x) (105)

be the total potential energy of the body of interest on the macro-scale,
with

Π
int

(F ) =

∫
B0

ψ(F ) dV (106)

and

Π
ext

(x) = −

∫
B0

x · f dV −

∫
∂B0,t

x · t0 dA . (107)

An equilibrium state, denoted by xeq, is characterized by an infimum of the
total potential energy in the space of admissible functions. The deformation
state xeq is stable if the inequality

Π(xka) ≥ Π(xeq) ∀ kinematically admissible xka (108)

holds and the equality sign only holds for some xka �= xeq, see Ogden (1984).
The inequality (108) is a sufficient (global) condition for the stability of the
equilibrium state xeq.
For a more suitable criterion, especially from the computational point of
view, we restrict our analysis to kinematically admissible functions in the
vicinity of xeq. This means that Eq. (108) becomes an infinitesimal stability
criterion, see Truesdell and Noll (1965), chapter 68. The deviation of the
total potential energy between an equilibrium state xeq and xka is

ΔΠ := Π(xka)−Π(xeq) . (109)

For the following remarks, let us recapitulate the first directional derivative
of Π in the direction of δx

d

dε
Π(xeq + ε δx)

∣∣∣∣
ε=0

=: G(xeq, δxeq) . (110)

The second directional derivative of Π, or equivalently the directional deriva-
tive of G, is

d

dε
G(xeq, δx, εΔx)

∣∣∣∣
ε=0

:= ΔG(xeq, δx,Δx) . (111)
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Let us now write ΔΠ, see (109), in terms of a classical Taylor expansion,
then we obtain

ΔΠ = G(xeq , δx) +
1

2!
ΔG(xeq, δx,Δx) +

1

3!
. . . . (112)

In an equilibrium state, G is per definition identical to zero, thus, the equi-
librium state is stable if

ΔG(xeq , δxeq,Δx) =

∫
B0

δF : A : ΔF > 0 (113)

holds. More general overviews in this field can be found e.g. in Pflüger
(1975) and Thompson and Hunt (1984).

Generalized Convexity Conditions play a major role for the proofs of the
existence of minimizing deformations x of the elastic free energy ψ(F ) of
boundary value problems subjected to specific boundary value conditions.
A sufficient condition for the existence of minimizers is the sequential-weak
lower semicontinuity (s.w.l.s.) and the coercivity of the free energy function.
Morrey (1952, 1966) introduced the concept of quasiconvexity, which is
formulated as an integral inequality over an arbitrary domain subjected to
affine Dirichlet boundary conditions:

[Definition of Quasiconvexity] An elastic stored energy is quasicon-
vex whenever for all B ⊂ R3, all constant deformation gradients F ∈ R3×3

and all superposed fluctuation fields w ∈ C∞0 (B) (i.e. with w = 0 on ∂B)
the integral inequality∫

B

W (F +Gradw) dV ≥

∫
B

W (F ) dV = W (F )×Vol(B) (114)

is valid, Morrey (1952). �

The sequential-lower semicontinuity condition is ensured if the elastic
stored energy is quasiconvex and an additional growth condition is fulfilled.

Another very important concept is the polyconvexity introduced by Ball
(1977a,b):

[Definition of Polyconvexity] F �→ W (F ) is polyconvex if and only
if there exists a function P : R3×3 ×R3×3 ×R �→ R (in general non-unique)
such that

W (F ) = P (F ,CofF , detF ) (115)

and the function (F ,CofF , detF ) ∈ R
19 �→ P (F ,CofF , detF ) ∈ R is convex

for all points X ∈ R3. �
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Polyconvex functions are always s.w.l.s.. Finally, let us recapitulate the
notion of Rank-one-convexity and ellipticity:

[Definition of Rank-one convexity] An elastic stored energy is rank-
one convex whenever

W (F + λm⊗N0) ≤ λW (F +m⊗N0) + (1− λ)W (F ) (116)

holds for all λ ∈ [0, 1], F ∈ R
3×3 and all m ∈ R3,N0 ∈ R3 with

det(F + λm⊗N0) > 0.

[Definition of Ellipticity] We say that the stored energy W (F ) =
ψ(C) leads to a uniformly elliptical equilibrium system whenever the uni-
form Legendre-Hadamard condition

∃ c+ > 0 , ∀F ∈ R3×3 , ∀m,N0 ∈ R3\{0} :

(m⊗N0) : A : (m⊗N0) ≥ c+ ‖m‖2‖N0‖
2

holds. We state that W gives rise to an (strictly) elliptical system if and
only if the Legendre-Hadamard condition is valid:

∀ F ∈ R
3×3 , ∀ m,N0 ∈ R

3\{0} : (m⊗N0) : A : (m⊗N0) ≥ 0 (> 0).

Note that for smooth stored energy functions W strict rank-one convex-
ity implies the strict Legendre-Hadamard condition. A physical interpreta-
tion of the aforementioned conditions can be obtained in the context in the
field of wave propagation, for more details we refer e.g. to Schröder (2010).

A free energy is materially stable if it is elliptic. A reformulation of the
Legendre-Hadamard condition yields

(m⊗N0) : A : (m⊗N0) = m ·Q(N0)m > 0 , (117)

with the accoustic tensor Q, which is given in index notation by

Q
ab

= A
aBbDN0BN0D . (118)

This means that the accoustic tensor must be positive definite if we want
to ensure material stability.

The non-uniqueness of solutions is an inherent feature in finite defor-
mation continuum mechanics. Such problems could occur on both scales,
the micro- and the macro-scale. In the following, we focus on microscopic
structural instabilities, i.e. on non-stable equilibrium states on the micro-
scale, in the context of the micro to macro transition. These phenomena are
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associated to convexity properties of the boundary value problems on both
scales and their interactions. Following Müller (1987) and Geymonat et al.
(1993), we summarize that (i) in case of convex functionals we compute
macroscopic energies by

ψ(F ) := inf
w̃

1

V0

∫
B0

ψ(F + �w̃) dV , (119)

with the fluctuation field w̃ on one unit cell B0. (ii) Structural instabil-
ity problems on the micro-scale are associated to the homogenization of
a nonconvex boundary value problem on the micro-scale. However, for
non-convex functions we have to find in addition the critical size of the
representative volume element Bcrit

0 , i.e.

ψ(F ) := inf
Bcrit

0

{
inf
w̃

1

V crit
0

∫
Bcrit

0

ψ(F + �w̃)dV

}
, (120)

with the fluctuation field w̃ on the representative volume element Bcrit
0 of

critical size. It should be noted that for micro-heterogeneous structures,
e.g. for fiber-reinforced matrix materials, the concept of quasiconvexity
may not hold. As an illustrative example, we consider the system depicted
in Fig. 9 and assume Dirichlet boundary conditions at the outer boundary.
Even under affine boundary deformations, as indicated in Fig. 9, we are
not able to expect an infimum of the stored energy of the whole system for
a constant deformation gradient. On the contrary, we observe a buckling
of the fiber for a specific compression state in horizontal direction, which
should represent a post-critical stable deformation state.

Figure 9. Fiber-reinforced matrix material: Unloaded reference configu-
ration (left) versus buckling of the elastically bedded rod under horizontal
compression (right), cf. Marsden and Hughes (1983).
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In the following we analyze the influence of the size of the representative
volume element (RVE) of a fiber-reinforced microstructure on the macro-
scopic response at microscopic buckling problems, as discussed in Schröder
(2000). A more detailed analysis of instabilities on both scales as well as
their interactions are given in Miehe et al. (2002). We consider a homoge-
neous deformation state at the macro-scale. The considered microstructure
consists of a weak matrix (volume faction 80%) with fibers, which are re-
inforced in horizontal direction, as depicted in Fig. 10a. We expect two
classical bifurcation modes, an out-of-phase buckling (Fig. 10b) and an in-
phase buckling (Fig. 10c) of the fibers.

a) b) c)

Figure 10. Horizontally loaded fiber reinforced composites: a) reference
configuration, b) symmetric (out-of-phase) and c) unsymmetric (in-phase)
buckling of the fibers, cf. Schröder (2000).

For simplicity, we apply a standard isotropic St. Venant-Kirchhoff ma-
terial for the matrix and the fibers and apply periodic boundary conditions.
The matrix material has a compression modulus of κM = 49.98N/mm2 and
a shear modulus of μM = 74.97N/mm2; for the reinforcement we consider
the parameters κI = 104 κM and μI = 104 μM . Applying the macroscopic
deformation gradient F with

F̄ =

⎡⎣ 1− λ 0 0
0 1 0
0 0 1

⎤⎦ (121)

represents a horizontal compression state. For the considered compression
case, we distinguish, as mentioned above, between two characteristic fail-
ure modes: buckling of the reinforcement in-phase (unsymmetric case) and
buckling out-of-phase (symmetric case). For the unsymmetric case, we con-
sider a finite-element discretization of an RVE with one fiber and for the
symmetric case a finite-element discretization of an RVE with two fibers
arranged in parallel. The crucial part is the yet unknown size of the RVEs.
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Thus, in order to find the critical load value as a function of the length of
the discretized microstructure we have to modify the length of the RVEs.
For the finite element simulation of the in-phase buckling we discretize the
system with 120× 20 and for the out-of-phase buckling with 60× 40 four-
noded standard displacement elements. We start the simulation with a
length of l = 12 (in consistent units) and increase the length by increments
of Δl = 12 until the value l = 60 is reached. Two typical post-critical defor-
mation states for the lengths l = 6 and l = 2 at the compressions λ = 0.04
and λ = 0.01, respectively, are shown in Fig. 11a,b.

a.

b.

Figure 11. In-phase buckling of the fiber: post-critical deformation state of
a) l = 6 at a compression parameter λ = 0.04 and b) l = 12 at a compression
parameter λ = 0.01, see Schröder (2000).

The macroscopic Kirchhoff-stresses τ11 with respect to the compression
parameter λ are depicted in Fig. 12 for different lengths l. With increasing
length l, the load-displacement curves are decreasing. Fig. 12b represents
the critical stress components τ11,crit at the onset of the microscopic insta-
bility. The critical load converges against the lower bound.

For the stability analysis of the out-of-phase buckling mode, we start the
simulation with a length l = 3 and increase the length stepwise using the
increment Δl = 1 until l = 12 is reached.
Fig. 13a shows the macroscopic Kirchhoff-stresses τ11 versus the loading
paramter λ for eight different lengths. In contrast to the previously dis-
cussed in-phase buckling mode, the change of the characteristic curve shape
is significant with increasing length. In Fig. 13b, the critical macroscopic
stresses τ11,crit are depicted for the onset of the buckling of the fibers. The
minimum of the critical stress τ11,crit is obtained at approximately l = 7.
Postcritical deformation states for the RVE of length l = 5 at the compres-
sion values λ = 0.02 and λ = 0.03 are depicted in Fig. 14a,b. A sequence
of deformation states for the length l = 12 is documented in Fig. 15a–c, for



A Numerical Two-Scale Homogenization Scheme: the FE²-Method 35
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Figure 12. In-phase buckling of the fiber: a) macroscopic Kirchhoff-stresses
τ11 versus the compression parameter λ and b) critical stress τ11,crit at the
onset of the structural instability at the micro-scale versus the length l of
the considered microstructure, see Schröder (2000).
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Figure 13. Out-of-phase buckling of the fibers: a) macroscopic Kirchhoff-
stresses τ11 versus the compression parameter λ for different lengths l and
b) critical stress τ11,crit at the onset of the structural instability versus the
length l, see Schröder (2000).

the load parameters λ = 0.011, 0.017 and 0.035, respectively. Additionally,
Fig. 15c shows that higher-order buckling modes occur in the case where
the length RVE becomes large enough. Here, three repeating characteristic
deformation patterns are observable within the RVE .

The two classical bifurcation modes, in-phase and out-of-phase, show
different characteristics in the postcritical regime. In case of the out-of-
phase buckling, the fibers support each other at a specific misalignment,


